
 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Table of Contents

Introduction

Welcome to the future of database connectivity. The Java Database Connectivity (JDBC) specification is a new basis
for developers to interface with data sources. The structure of the JDBC is designed to allow developers to program for a
standard interface, and let the low-level JDBC driver for different databases deal with the connection and querying of the
databases; hence, the developer does not need to worry about dealing with different SQL flavors for each database. The
JDBC is also very flexible—a developer doesn’t necessarily lose features specific to the target database. Best of all, the
JDBC is based on the Java language!

Getting Software

The software that you’ll need to get started with the JDBC is readily available on the Web. The JDBC drivers that you
will need to connect to your databases are currently available for most popular databases from a variety of software
vendors. The basic package you’ll need is the JDBC API, which consists of the core classes of the JDBC. If you don’t
already have a Java development kit, such as Javasoft’s JDK, you’ll need that as well. At the time this manuscript was
finished, the examples in the book were tested with the JavaSoft JDK, Symantec Cafe, Microsoft J++, and Borland’s C+
+ 5.0 with Java support. You can get the JavaSoft JDK at http://www.javasoft.com.

The JDBC API, and the ODBC driver for JDBC (that’s right, you can use the JDBC with your current ODBC drivers!)
commonly referred to as the JDBC-ODBC bridge can be downloaded at the JDBC Web site at http://splash.javasoft.com/
jdbc. You’ll also find the documentation for the JDBC API at this Web site. If you want to see some of the original
JDBC specification, this can be downloaded from the JDBC Web site as well.

Overview of Chapters

Chapter 1, JDBC: Databases, The Java Way!, begins with a high-level introduction to the JDBC. You’ll see how
modular JDBC drivers fit into the development cycle, as well as where ODBC fits into the JDBC’s overall structure.

Chapter 2, SQL 101: An Introduction To SQL, takes a quick stroll through SQL, the language of databases. This chapter
is a primer on SQL, and is useful if you need to brush up on your data-speak. It provides a basis of reference for some of
the SQL queries performed in the JDBC programs in the book.

Chapter 3, Using JDBC Drivers, shows you how to install JDBC drivers, as well as how to handle the installation of the
JDBC API base classes. A “quick start” section also prepares you for what’s ahead by giving you a simple, but complete
JDBC program.

Chapter 4, The Interactive SQL Query Applet, takes you head first into the JDBC by presenting a complete Java applet
that uses the JDBC. The applet allows a user to enter SQL queries and run them against a database, and to show the
results.

Chapter 5, Accessing ODBC Services Using JDBC, takes a look at the JDBC-ODBC bridge in detail. Limitations of the
bridge, as well as a complete listing of the features of ODBC available in the JDBC, are presented.

http://www.javasoft.com/
http://splash.javasoft.com/jdbc/
http://splash.javasoft.com/jdbc/

Chapter 6, SQL Datatypes In Java And ORM, shows you how to map SQL datatypes into Java, and provides a discussion
of some of the special classes available in the JDBC API that facilitate the exchange of data between your Java program
and the database.

Chapter 7, Working With Query Results, provides a pathway for using results fetched from a SQL query. The complete
cycle of querying a database, formatting the results, and displaying or printing them in nice graphs is presented with
complete source code. A bar graph and pie chart are dynamically created in an applet using data from a query.

Chapter 8, The Multimedia JDBC Application: Icon Store, continues the discussion in Chapter 7 by expanding into the
realm of multimedia. Streams that contain binary data, such as images, are the focus of this chapter. We’ll show you how
to store and retrieve binary data from a database, using the methods available in the JDBC.

Chapter 9, Java and Database Security, reflects on the security consideration you need to ponder before you put your
JDBC programs into production. The issue of “applet trusting,” and more, is covered in this chapter.

Chapter 10, Writing Database Drivers, takes you into the heart of the JDBC with a thorough discussion of the
programming details of JDBC drivers. You’ll even see an actual JDBC driver produced, as our SimpleText JDBC driver
is hammered out during the chapter. The full source code for this driver is presented in Appendix B, while the intricacies
of writing a JDBC driver are explained in detail in this chapter.

Chapter 11, Internet Database Issues: Middleware, details three-tier database systems. A three-tier system is developed
in this chapter to give you an idea of the functionality possible with these types of “indirect” database access. The full
source code for the developed application server and the client are presented, as well as a sample applet that uses the
client to query and obtain results from a database.

Chapter 12, The JDBC API, provides you with a reference for all of the methods, variables, classes, exceptions, and
interfaces that are the JDBC.

Table of Contents

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Introduction

Chapter 1—JDBC: Databases The Java Way!
What Is The JDBC?
The JDBC Structure
ODBC’s Part In The JDBC
Summary

Chapter 2—SQL 101

The Relational Model And SQL
Understanding The Basics
Putting It Into Perspective: Schema And Catalog
Introducing Keys
Using Multiple Tables And Foreign Keys

Data Definition Language
Declaring Domains
Performing Checks
Creating Tables
Manipulating Tables

Data Maintenance Language
Data Query Language
Coming Up Next

Chapter 3—Using JDBC Drivers

Quick Start Guide
Installing java.sql.*
Registering And Calling JDBC Drivers

The sql.drivers Property
There’s Always A Class For A Name
Just Do It

JDBC URL And The Connection
Using ODBC Drivers

Installing The JDBC-ODBC Bridge
Setting Up ODBC Drivers

Summary

Chapter 4—The Interactive—SQL Applet
Your First JDBC Applet

The Blueprint
Getting A Handle On The JDBC Essentials: The Complete Applet Source Code

The Look Of The Applet
Handling Events
Opening The Connection
No Guts, No Glory: Executing Queries And Processing Results
Wrapping It Up

The HTML File That Calls The Applet
The Final Product
Coming Up Next

Chapter 5—Accessing ODBC Services Using JDBC

Bridge Requirements
The Bridge Is Great, But...
The ODBC URL
JDBC To ODBC Calls: A Roadmap

Chapter 6—SQL Data Types In Java And ORM
Mapping SQL Data To Java
ResultSetMetaData
Understanding The Object Relation Model

Mapping A Table Into A Java Object
Summary

Chapter 7—Working With Query Results

A Basic Java Object For Storing Results
Showing The Results

Charting Your Data
Summary

Chapter 8—The IconStore Multimedia JDBC Application

IconStore Requirements
Building The Database
Application Essentials

Writing The main Method
Establishing The Database Connection
Creating The Menu
Creating The Lists
Handling Events
Saving The Image

Summary

Chapter 9—Java And Database Security

Database Server Security
Rooting Out The Packet Sniffers
Web Server CGI Holes

Finding A Solution
Applet Security: Can I Trust You?

The Applet Security Manager
I’m A Certified Applet

Summary

Chapter 10—Writing Database Drivers

The JDBC Driver Project: SimpleText
SimpleText SQL Grammar
SimpleText File Format

The DriverManager
JDBC Exception Types
JDBC Data Types

Character Data: CHAR, VARCHAR, And LONGVARCHAR
Exact Numeric Data: NUMERIC And DECIMAL
Binary Data: BINARY, VARBINARY, And LONGVARBINARY
Boolean Data: BIT
Integer Data: TINYINT, SMALLINT, INTEGER, And BIGINT
Floating-Point Data: REAL, FLOAT, And DOUBLE
Time Data: DATE, TIME, And TIMESTAMP

New Data Classes
Numeric
Date
Time
Timestamp

Native Drivers: You’re Not From Around Here, Are Ya?
Implementing Interfaces
Tracing

Turning On Tracing
Writing Tracing Information
Checking For Tracing

Data Coercion
Escape Clauses

Date, Time, And Timestamp
Scalar Functions
LIKE Predicate Escape Characters
Outer Joins
Procedures

The JDBC Interfaces
Driver
Connection
DatabaseMetaData
Statement
PreparedStatement
ResultSet
ResultSetMetaData

Summary

Chapter 11—Internet Database Issues: Middleware

Connectivity Issues Involved With Database Access
Advantages Of Middleware
Disadvantages Of Middleware

The Application Server: A Complete Example With Code
The Client: A Complete Example With Code
Summary

Chapter 12—The JDBC API

Classes
public class Date
public class DriverManager
public class DriverPropertyInfo
public final class Numeric
public class Time
public class TimeStamp

public class Types
Interfaces

public interface CallableStatement
public interface Connection
public interface DatabaseMetaData
public interface Driver
public interface PreparedStatement
public interface ResultSet
public interface ResultSetMetaData
public interface Statement

Exceptions
public class DataTruncation
public class SQLException
public class SQLWarning

Appendix A
Appendix B
Appendix C
Appendix D
Index

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 1
JDBC: Databases The Java Way!

The Internet has spurred the invention of several new technologies in client/server computing—the most recent of which
is Java. Java is two-dimensional: It’s a programming language and also a client/server system in which programs are
automatically downloaded and run on the local machine (instead of the server machine). The wide embrace of Java has
prompted its quick development. Java includes Java compilers, interpreters, tools, libraries, and integrated development
environments (IDEs). Javasoft is leading the way in the development of libraries to extend the functionality and usability
of Java as a serious platform for creating applications. One of these libraries, called Application Programming Interfaces
(APIs), is the Java Database Connectivity API, or JDBC. Its primary purpose is to intimately tie connectivity to
databases with the Java language.

We’ll discuss the reasoning behind the JDBC in this chapter, as well as the design of the JDBC and its associated API.
The Internet, or better yet, the technologies used in the operation of the Internet, are tied into the design of the JDBC.
The other dominant design basis for the JDBC is the database standard known as SQL. Hence, the JDBC is a fusion of
three discrete computer areas: Java, Internet technology, and SQL. With the growing implementation of these Internet
technologies in “closed” networks, called intranets, the time was right for the development of Java-based enterprise
APIs. In this book, intranet and Internet are both used to describe the software technology behind the network, such as
the World Wide Web.

What Is The JDBC?

As I mentioned a moment ago, JDBC stands for Java Database Connectivity. What is this JDBC besides a nifty
acronym? It refers to several things, depending on context:

• It’s a specification for using data sources in Java applets and applications.
• It’s an API for using low-level JDBC drivers.
• It’s an API for creating the low-level JDBC drivers, which do the actual connecting/transacting with data
sources.
• It’s based on the X/Open SQL Call Level Interface (CLI) that defines how client/server interactions are
implemented for database systems.

Confused yet? It’s really quite simple: The JDBC defines every aspect of making data-aware Java applications and
applets. The low-level JDBC drivers perform the database-specific translation to the high-level JDBC interface. This
interface is used by the developer so he doesn’t need to worry about the database-specific syntax when connecting to and
querying different databases. The JDBC is a package, much like other Java packages such as java.awt. It’s not currently
a part of the standard Java Developer’s Kit (JDK) distribution, but it is slated to be included as a standard part of the
general Java API as the java.sql package. Soon after its official incorporation into the JDK and Java API, it will also
become a standard package in Java-enabled Web browsers, though there is no definite timeframe for this inclusion. The
exciting aspect of the JDBC is that the drivers necessary for connection to their respective databases do not require any
pre-installation on the clients: A JDBC driver can be downloaded along with an applet!

The JDBC project was started in January of 1996, and the specification was frozen in June of 1996. Javasoft sought the

input of industry database vendors so that the JDBC would be as widely accepted as possible when it was ready for
release. And, as you can see from this list of vendors who have already endorsed the JDBC, it’s sure to be widely
accepted by the software industry:

• Borland International, Inc.
• Bulletproof
• Cyber SQL Corporation
• DataRamp
• Dharma Systems, Inc.
• Gupta Corporation
• IBM’s Database 2 (DB2)
• Imaginary (mSQL)
• Informix Software, Inc.
• Intersoft
• Intersolv
• Object Design, Inc.
• Open Horizon
• OpenLink Software
• Oracle Corporation
• Persistence Software
• Presence Information Design
• PRO-C, Inc.
• Recital Corporation
• RogueWave Software, Inc.
• SAS Institute, Inc. ™
• SCO
• Sybase, Inc.
• Symantec
• Thunderstone
• Visigenic Software, Inc.
• WebLogic, Inc.
• XDB Systems, Inc.

The JDBC is heavily based on the ANSI SQL-92 standard, which specifies that a JDBC driver should be SQL-92 entry-
level compliant to be considered a 100 percent JDBC-compliant driver. This is not to say that a JDBC driver has to be
written for an SQL-92 database; a JDBC driver can be written for a legacy database system and still function perfectly.
As a matter of fact, the simple JDBC driver included with this book uses delimited text files to store table data. Even
though the driver does not implement every single SQL-92 function, it is still a JDBC driver. This flexibility will be a
major selling point for developers who are bound to legacy database systems but who still want to extend their client
applications.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

The JDBC Structure

As I mentioned at the beginning of this chapter, the JDBC is two-dimensional. The reasoning for the split is to separate
the low-level programming from the high-level application interface. The low-level programming is the JDBC driver.
The idea is that database vendors and third-party software vendors will supply pre-built drivers for connecting to
different databases. JDBC drivers are quite flexible: They can be local data sources or remote database servers. The
implementation of the actual connection to the data source/database is left entirely to the JDBC driver.

The structure of the JDBC includes these key concepts:

• The goal of the JDBC is a DBMS independent interface, a “generic SQL database access framework,” and a
uniform interface to different data sources.
• The programmer writes only one database interface; using JDBC, the program can access any data source
without recoding.

Figure 1.1 shows the architecture of the JDBC. The DriverManager class is used to open a connection to a database via
a JDBC driver, which must register with the DriverManager before the connection can be formed. When a connection
is attempted, the DriverManager chooses from a given list of available drivers to suit the explict type of database
connection. After a connection is formed, the calls to query and fetch results are made directly with the JDBC driver.
The JDBC driver must implement the classes to process these functions for the specific database, but the rigid
specification of the JDBC ensures that the drivers will perform as expected. Essentially, the developer who has JDBC
drivers for a certain database does not need to worry about changing the code for the Java program if a different type of
database is used (assuming that the JDBC driver for the other database is available). This is especially useful in the
scenario of distributed databases.

Figure 1.1 The architecture of the JDBC.

The JDBC uses a URL syntax for specifying a database. For example, a connection to a mSQL database, which was used
to develop some of the Java applets in this book, is:

jdbc:msql://mydatabase.server.com:1112/testdb

javascript:displayWindow('images/01-01.jpg',200,337)
javascript:displayWindow('images/01-01.jpg',200,337)

This statement specifies the transport to use (jdbc), the database type (msql), the server name, the port (1112), and the
database to connect to (testdb). We’ll discuss specifying a database more thoroughly in Chapter 3.

The data types in SQL are mapped into native Java types whenever possible. When a native type is not present in Java, a
class is available for retrieving data of that type. Consider, for example, the Date type in the JDBC. A developer can
assign a date field in a database to a JDBC Date class, after which the developer can use the methods in the Date class to
display or perform operations. The JDBC also includes support for binary large objects, or BLOB data types; you can
retreive and store images, sound, documents, and other binary data in a database with the JDBC. In Chapter 6, we’ll
cover the SQL data types and their mapping into Java/JDBC, as well object-relational mapping.

ODBC’s Part In The JDBC

The JDBC and ODBC share a common parent: Both are based on the same X/OPEN call level interface for SQL.
Though there are JDBC drivers emerging for many databases, you can write database-aware Java programs using
existing ODBC drivers. In fact, Javasoft and Intersolv have written a JDBC driver—the JDBC-ODBC Bridge—that
allows developers to use exisiting ODBC drivers in Java programs. Figure 1.2 shows the place of the JDBC-ODBC
Bridge in the overall architecture of the JDBC. However, the JDBC-ODBC Bridge requires pre-installation on the client,
or wherever the Java program is actually running, because the Bridge must make native method calls to do the
translation from ODBC to JDBC. This pre-installation issue is also true for JDBC drivers that use native methods. Only
100 percent Java JDBC drivers can be downloaded across a network with a Java applet, thus requiring no pre-installation
of the driver.

Figure 1.2 ODBC in the JDBC model.

ODBC drivers function in the same manner as “true” JDBC drivers; in fact, the JDBC-ODBC bridge is actually a
sophisticated JDBC driver that does low-level translation to and from ODBC. When the JDBC driver for a certain
database becomes available, you can easily switch from the ODBC driver to the new JDBC driver with few, if any,
changes to the code of the Java program.

Summary

The JDBC is not only a specification for using data sources in Java applets and applications, but it also allows you to
create and use low-level drivers to connect and “talk” with data sources. You have now explored the JDBC architecture
and seen how the ODBC fits into the picture. The important concept to remember about the JDBC is that the modular
design of the JDBC interface allows you to change between drivers—hence databases—without recoding your Java
programs.

javascript:displayWindow('images/01-02.jpg',200,400)
javascript:displayWindow('images/01-02.jpg',200,400)

In the next chapter, we’ll take a step back to give you a quick primer on SQL, one of the pillars of the JDBC. If you are
already familiar with SQL-92, feel free to skip the chapter. However, I think that you may find the chapter helpful in
clarifying the SQL queries performed in the sample JDBC programs we develop in this book.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 2
SQL 101

SQL—the language of database. This chapter’s primary purpose is to serve as a primer on this data sublanguage.
Although it would be impossible for me to cover the intricacies of SQL in just one chapter, I do intend to give you a
solid introduction that we’ll build on in the remainder of this book. Because the JDBC requires that drivers support the
ANSI SQL-92 standard to be “JDBC compliant,” I’ll be basing this chapter on that standard. SQL-92, which I’ll refer to
as SQL, is based on the relational model of database management proposed in 1970 by Dr. E.F. Codd; over time, SQL
evolved into the full-featured language it is today, and it continues to evolve with our ever-changing needs.

A JDBC driver doesn’t absolutely have to be SQL-92 compliant. The JDBC specification states the following: “In order
to pass JDBC compliance tests and to be called ‘JDBC compliant, we require that a driver support at least ANSI SQL-92
Entry Level.” This requirement is clearly not possible with drivers for legacy database management systems (DBMS).
The driver in these cases will not implement all of the functions of a “compliant” driver. In Chapter 10, Writing JDBC
Drivers, we develop the basics of a JDBC driver that implements only some of the features of SQL, but is a JDBC driver
nonetheless.

We’ll start our exploration of SQL by discussing the relational model, the basis for SQL. Then we’ll cover the essentials
of building data tables using SQL. Finally, we’ll go into the manipulation and extraction of the data from a datasource.

The Relational Model And SQL

Although SQL is based on the relational model, it is not a rigid implementation of it. In this section, we’ll discuss the
relational model as it pertains to SQL so we do not obfuscate our discussion of this standard, which is central to the
JDBC specification. As part of its specification, the SQL-92 standard includes the definition of data types. We’ll cover
these data types, and how to map to Java, in Chapter 6, SQL Data Types in Java and the ORM.

Understanding The Basics

The basic units in SQL are tables, columns, and rows. So where does the “relational” model fit into the SQL units?
Strictly speaking, in terms of the relation model, the “relation” is mapped in the table: It provides a way to relate the data
contained within the table in a simple manner. A column represents a data element present in a table, while a row
represents an instance of a record, or entry, in a table. Each row contains one specific value for each of the columns; a
value can be blank or undefined and still be considered valid. The table can be visualized, you guessed it, as a matrix,
with the columns being the vertical fields and the rows being the horizontal fields. Figure 2.1 shows an example table
that can be used to store information about a company’s employees.

Figure 2.1 An SQL table.

javascript:displayWindow('images/02-01.jpg',554,208)
javascript:displayWindow('images/02-01.jpg',554,208)

Before we push on, there are some syntax rules you need to be aware of:

• SQL is not whitespace sensitive. Carriage returns, tabs, and spaces don’t have any special meaning when
executing queries. Keywords and tokens are delimited by commas, when applicable, and parentheses are used
for grouping.
• When performing multiple queries at one time, you must use semicolons to separate distinct queries.
• Queries are not case sensitive.

A word of caution: While the keywords are not case sensitive, the string values that are stored as data in a table do
preserve case, as you would expect. Keep this in mind when doing string comparisons in queries.

Putting It Into Perspective: Schema And Catalog

Though you can stick all of your data into a single table, it doesn’t make sense logically to do this all the time. For
example, in our EMPLOYEE table shown previously, we could add information about company departments; however,
the purpose of the EMPLOYEE table is to store data on the employees. The solution is for us to create another table,
called DEPARTMENT, which will contain information about the specific departments in the company. To associate an
employee with a department, we can simply add a column to the EMPLOYEE table that contains the department name
or number. Now that we have employees and departments neatly contained, we can add another table, called PROJECT,
to keep track of the projects each employee is involved in. Figure 2.2 shows our tables.

Figure 2.2 The EMPLOYEE, DEPARTMENT, and PROJECT tables track employees by department and project.

Now that you understand how to logically separate your data, it’s time to take our model one step higher and introduce
you to the schema/catalog relationship. The schema is a higher-level container that is defined as a collection of zero or
more tables, where a table belongs to exactly one schema. In the same way, a catalog can contain zero or more schemas.
This abstract is a necessary part of a robust relational database management system (RDBMS). The primary reason is
access control: It facilitates who can read a table, who can change a table, and even who can create or destroy tables.
Figure 2.3 demonstrates this point nicely. Here we have added another table, called CONFIDENTIAL. It contains the
home address, home phone number, and salary of each employee. This information needs to belong in a separate schema
so that anyone who is not in payroll cannot access the data, while allowing those in marketing to get the necessary data
to do their job.

Figure 2.3 The table, schema, and catalog relationship allows you to limit access to confidential information.

Previous Table of Contents Next

javascript:displayWindow('images/02-02.jpg',423,349)
javascript:displayWindow('images/02-02.jpg',423,349)
javascript:displayWindow('images/02-03.jpg',414,460)
javascript:displayWindow('images/02-03.jpg',414,460)

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Introducing Keys

As you can see in the previous example, we have purposely set up the three tables to link to one another. The
EMPLOYEE table contains a column that has the department number that the employee belongs in. This department
number also appears in the DEPARTMENT table, which describes each department in the company. The EMPLOYEE
and CONFIDENTIAL tables are related, but we still need to add one corresponding entry (row) in one table for each
entry in the other, the distinction coming from the employee’s number.

The link—employee number and department number—we have set up can be thought of as a key. A key is used to
identify information within a table. Each individual employee or department should have a unique key to aid in various
functions performed on the tables. In keeping with the relational model, the key is supposed to be unique within the
table: No other entry in the table may have the same primary key.

A single column is sometimes enough to uniquely identify a row, or entry. However, a combination of rows can be used
to compose a primary key—for example, we might want to just use the combination of the title and city location of a
department to comprise the primary key. In SQL, columns defined as primary keys must be defined. They cannot be
“undefined” (also known as NULL).

Using Multiple Tables And Foreign Keys

As we have shown, it’s best to split data into tables so that the data contained within a table is logically associated.
Oftentimes, the data will belong logically in more than one table, as is the case of the employee number in the
EMPLOYEE and CONFIDENTIAL tables. We can further define that if a row in one table exists, a corresponding row
must exist in another table; that is, we can say that if there is an entry in the EMPLOYEE table, there must be a
corresponding entry in the CONFIDENTIAL table. We can solidify this association with the use of foreign keys, where a
specific column in the dependent table matches a column in a “parent” table. In essence, we are linking a “virtual”
column in one table to a “real” column in another table. In our example database, we link the CONFIDENTIAL table’s
employee number column to the employee number column in the EMPLOYEE table. We are also specifying that the
employee number is a key in the CONFIDENTIAL table (hence the term foreign key). A composite primary key can
contain a foreign key if necessary.

We can create a logical structure to our data using the concept of a foreign key. However, in preparation, you’ll have to
put quite a bit of thought into creating your set of tables; an efficient and planned structure to the data by way of the
tables and keys requires good knowledge of the data that is to be modeled. Unfortunately, a full discussion on the
techniques of the subject is beyond the scope of this book. There are several different ways to efficiently model data;
Figure 2.4 shows one visualization of the database we have created. The SQL queries we perform in the examples of this
book are not very complex, so the information outlined in this section should suffice to convey a basic understanding of
the example databases created throughout the following chapters.

Figure 2.4 E-R diagram of relationships between tables.

Data Definition Language

Now that we have outlined the basic foundation of SQL, let’s write some code to implement our database. The formal
name for the language components used to create tables is Data Definition Language, or DDL. The DDL is also used to
drop tables and perform a variety of other functions, such as adding and deleting rows (entries) from a table, and adding
and deleting columns from a table. I’ll show you some of these along the way.

Declaring Domains

One of the handy shortcuts that the DDL offers is a way to create predefined data objects. Though we haven’t really
talked about the data types available in SQL, you can probably guess the common ones like integer, character, decimal
(floating point), date, etc. Domains allow you to declare a data type of specific length and then give the declared type a
name. This can come in handy if you have numerous data columns that are of the same data type and characteristics.
Here’s the SQL statement you use to declare a domain:

CREATE DOMAIN EMP_NUMBER AS CHAR(5)

Tip: Smart domain declaration habits.
When you are actually creating or altering tables, this domain can be used instead of specifying CHAR(20)
each time. There are a number of reasons why this is good practice. Notice that we chose to make
EMP_NUMBER a domain. This is a column that appears in several tables.

If we mistakenly use the wrong type or length in one of the table definitions where we have employee numbers,
it could cause havoc when running SQL queries. You’ll have to keep reading to find out the other reason.

Previous Table of Contents Next

javascript:displayWindow('images/02-04.jpg',427,345)
javascript:displayWindow('images/02-04.jpg',427,345)

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Performing Checks

Predefining a data object is also useful for making sure that a certain entry in a column matches the data we expect to
find there. For example, our empno field should contain a number. If it doesn’t, performing a check of that data will alert
us to the error. These checks can exist in the actual table definition, but it’s efficient to localize a check in a domain.
Hence, we can add a check to our employee number domain:

CREATE DOMAIN EMP_NUMBER AS CHAR(5) CHECK (VALUE IS NOT NULL);

Now our domain automatically checks for any null entries in columns defined as EMP_NUMBER. This statement
avoids problems that crop up from non-existent entries, as well as allowing us to catch any rogue SQL queries that add
an incorrect (those that do not set the employee number) entry to the table.

Creating Tables

Creating a table in SQL is really pretty easy. The one thing you need to keep in mind is that you should define the
referenced table, in this case EMPLOYEE, before defining the referencing table, CONFIDENTIAL. The following code
creates the EMPLOYEE table shown in Figure 2.2:

CREATE TABLE EMPLOYEE
(
empno CHAR(5) PRIMARY KEY,
lastname VARCHAR(20) NOT NULL,
firstname VARCHAR(20) NOT NULL,
function VARCHAR(20) NOT NULL,
department VARCHAR(20)
);

We also could have easily incorporated the domain that we defined earlier into the creation of the table, as shown here:

CREATE DOMAIN EMP_NUMBER AS CHAR(5) CHECK (VALUE IS NOT NULL);

CREATE TABLE EMPLOYEE
(
empno EMP_NUMBER PRIMARY KEY,
lastname VARCHAR(20) NOT NULL,
firstname VARCHAR(20) NOT NULL,
function VARCHAR(20) NOT NULL,
department VARCHAR(20)
);

I can hear you now, “What’s this VARCHAR data type?” SQL has two defined string types: CHAR and VARCHAR.
The RDBMS allocates exactly the amount of space you specify when you use a CHAR data type; when you set an entry

that is defined as a CHAR(N) to a string smaller than the size of N, the remaining number of characters is set to be blank.
On the other hand, VARCHAR simply stores the exact string entered; the size you have specified is strictly a limit on
how big the entered value can be.

We also see the NOT NULL directive again, which institutes the check on the specific column entry. We discussed
primary and foreign keys earlier, now let’s see how we actually implement them. Note that you should define the
referenced table before defining the referencing table.

Now it’s time to create the CONFIDENTIAL table. This table uses the empno attribute of the EMPLOYEE table as its
primary key, via the REFERENCES keyword.

CREATE DOMAIN EMP_NUMBER AS CHAR(5) CHECK (VALUE IS NOT NULL);

CREATE TABLE CONFIDENTIAL
(
empno EMP_NUMBER PRIMARY KEY,
homeaddress VARCHAR(50),
homephone VARCHAR(12),
salary DECIMAL,
FOREIGN KEY (empno) REFERENCES EMPLOYEE (empno)
)

We have tied the empno field in the CONFIDENTIAL table to the empno field in the EMPLOYEE table. The fact that
we used the same name, empno, is a matter of choice rather than a matter of syntax. We could have named the empno
field whatever we wanted in the CONFIDENTIAL table, but we would need to change the first field referred to in the
FOREIGN KEY declaration accordingly.

Manipulating Tables

Database management often requires you to make minor modifications to tables. However, careful planning can help you
keep these alterations to a minimum. Let’s begin by dropping, or removing, a table from a database:

DROP TABLE EMPLOYEE;

This is all we have to do to remove the EMPLOYEE table from our database. However, if the table is referenced by
another table, as is the case with the CONFIDENTIAL table, a RDBMS may not allow this operation to occur. In this
situation, you would have to drop any referencing tables first, and then rebuild them without the referencing.

Altering a table definition is as straightforward as dropping a table. To remove a column from a table, issue a command
like this:

ALTER TABLE EMPLOYEE
DROP firstname;

Of course, if this column is part of the table’s key, you won’t be able to remove it. Also, if the column is referenced by
another table, or there is another column in any table that is dependent on this column, the operation is not allowed.

To add a column to a table, run a query like this:

ALTER TABLE CONFIDENTIAL
ADD dateofbirth DATE NOT NULL;

You can also make multiple “alterations” at one time with the ALTER clause.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Data Maintenance Language

The subset of commands for adding, removing, and changing the data contained in tables is the Data Maintenance
Language (DML). As pointed out earlier, the data is manifest in the form of rows. So, basically, DML performs row-
based operations. Let’s see how this works by inserting an entry (row) in the EMPLOYEE table:

INSERT INTO EMPLOYEE
VALUES (
'00201',
'Pratik',
'Patel',
'Author',
''
);

Here we have inserted the appropriate information in the correct order into the EMPLOYEE table. To be safe, you can
specify which field each of the listed tokens goes into:

INSERT INTO EMPLOYEE (empno, lastname, firstname, function, department)
VALUES (
'00201', 'Pratik', 'Patel', 'Author', ''
);

If you don’t want to add all the fields in the row, you can specify only the fields you wish to add:

INSERT INTO EMPLOYEE (empno, lastname, firstname, function)
VALUES (
'00201', 'Pratik', 'Patel', 'Author'
);

As you can see, I chose not to add anything in the department field. Note that if a field’s check constraint is not met, or a
table check is not met, an error will be produced. For example, if we did not add something under the firstname field, an
error would have been returned because we defined the table’s firstname column check as NOT NULL. We did not set
up a check for the department field, so the previous command would not produce an error.

To delete a table’s contents without removing the table completely, you can run a command like this:

DELETE FROM EMPLOYEE;

This statement will wipe the table clean, leaving no data in any of the columns, and, essentially, deleting all of the rows
in the table. Deleting a single entry requires that you specify some criteria for deletion:

DELETE FROM EMPLOYEE
WHERE empno='00201';

You can delete multiple rows with this type of operation, as well. If the WHERE clause matches more than one row, all
of the rows will be deleted. You can also delete multiple entries by using the SELECT command in the WHERE clause;
we will get to the SELECT command in the next section.

If you really want to get fancy, you can use one statement to delete the same row from more than one table:

DELETE FROM EMPLOYEE, CONFIDENTIAL
WHERE empno='00201';

The final command I want to cover in this section is UPDATE. This command allows you to change one or more
existing fields in a row. Here is a simple example of how to change the firstname field in the EMPLOYEE table:

UPDATE EMPLOYEE
SET firstname = 'PR'
WHERE empno='00201';

We can set more than one field, if we wish, by adding more expressions, separated by commas, like this:

UPDATE EMPLOYEE
SET firstname='PR', function='Writer'
WHERE empno='00201';

As you’ll see in the next section, the WHERE clause can take the form of a SELECT query so that you can change
multiple rows according to certain criteria.

Data Query Language

You have seen how to create your tables and add data to them, now let’s see how to retrieve data from them. The SQL
commands that you use to retrieve data from a table are part of the Data Query Language (DQL). DQL’s primary
command is SELECT, but there are a host of predicates you can use to enhance SELECT’s flexibility and specificity.
Oftentimes, the key to understanding the process of querying is to think in terms of mathematical sets. SQL, like all
fourth-generation languages, is designed to pose the question, “What do I want?” as opposed to other computer
languages, like Java and C++, which pose the question, “How do I do it?”

Let’s look at a set representation of our example database as shown in Figure 2.3. When making queries, you’ll want to
ask these questions:

• Where is the data located in terms of the table?
• What are the references?
• How can I use them to specify what I want?

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Mastering SQL querying is not an easy task, but with the proper mind set, it is intuitive and efficient, thanks to the
relational model upon which SQL is based.

The syntax of the SELECT statement is shown here:

SELECT column_names
FROM table_names
WHERE predicates

Let’s take a look at the various functions of the SELECT command. To retrieve a complete table, run this query:

SELECT * FROM EMPLOYEE;

To get a list of employees in the Editorial department, run this query:

SELECT * FROM EMPLOYEE
WHERE department = 'Editorial';

To sort the list based on the employees’ last names, use the ORDER BY directive:

SELECT * FROM EMPLOYEE
WHERE department= 'Editorial'
ORDER BY lastname;

To get this ordered list but only see the employee number, enter the following statements:

SELECT empno FROM EMPLOYEE
WHERE department = 'Editorial'
ORDER BY lastname;

To get a list of users with the name Pratik Patel, you would enter:

SELECT * FROM EMPLOYEE
WHERE (firstname='Pratik') AND (lastname='Patel');

What if we want to show two tables at once? No problem, as shown here:

SELECT EMPLOYEE.*, CONFIDENTIAL.*
FROM EMPLOYEE, CONFIDENTIAL;

Here’s a more challenging query: Show the salary for employees in the Editorial department. According to our tables,

the salary information is in the CONFIDENTIAL table, and the department in which an employee belongs is in the
EMPLOYEE table. How do we associate a comparison in one table to another? Since we used the reference of the
employee number in the CONFIDENTIAL table from the EMPLOYEE table, we can specify the employees that match a
specified department, and then use the resulting employee number to retrieve the salary information from the
CONFIDENTIAL table:

SELECT c.salary
FROM EMPLOYEE as e, CONFIDENTIAL as c
WHERE e.department = 'Editorial'
 AND c.empno = e.empno;

We have declared something like a variable using the as keyword. We can now reference the specific fields in the table
using a “.”, just like an object. Let’s begin by determining which people in the entire company are making more than
$25,000:

SELECT salary
FROM CONFIDENTIAL
WHERE salary > 25000;

Now let’s see who in the Editorial department is making more than $25,000:

SELECT c.salary
FROM EMPLOYEE as e, CONFIDENTIAL as c
WHERE e.department = 'Editorial'
 AND c.empno = e.empno
 AND c.salary > 25000;

You can perform a number of other functions in SQL, including averages. Here’s how to get the average salary of the
people in the Editorial department:

SELECT AVG (c.salary)
FROM EMPLOYEE as e, CONFIDENTIAL as c
WHERE e.department = 'Editorial'
 AND c.empno = e.empno;

Of course, the possibilities with SQL exceed the relatively few examples shown in this chapter. Because this book’s goal
is to introduce the JDBC specifically, I didn’t use complex queries in the examples. And now our discussion on SQL is
complete. If you are interested in learning more about SQL, I recommend that you check out our book’s Website, where
I have posted a list of recommended books on the topic of SQL and distributed databases.

Coming Up Next

The next chapter begins our journey into JDBC. I’ll show you how to use JDBC drivers for connecting to data sources.
Then we’ll cover installing drivers, as well as the proper way to use drivers that are dynamically fetched with an applet.
Finally, we’ll discuss the security restrictions of using directly downloaded drivers as opposed to locally installed
drivers.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 3
Using JDBC Drivers

As a developer who’s using the JDBC, one of the first things you need to understand is how to use JDBC drivers and the
JDBC API to connect to a data source. This chapter outlines the steps necessary for you to begin that process. We’ll be
covering the details of getting JDBC drivers to work, as well as the driver registration process we touched on in Chapter
1. We’ll also take some time to explore JavaSoft’s JDBC-ODBC Bridge, which allows your Java programs to use ODBC
drivers to call ODBC data sources.

Before our discussion gets underway though, I need to point out a few things about JDBC drivers. First, there are no
drivers packaged with the JDBC API; you must get them yourself from software vendors. Check out this book’s Web
site for links to demo versions of drivers for your favorite database server, as well as free JDBC drivers available on the
Internet. Second, if you want to use ODBC, don’t forget that you’ll need ODBC drivers, as well. If you don’t have a
database server, but you want to use JDBC, don’t despair: You can use the ODBC drivers packaged with Microsoft
Access. Using the JDBC-ODBC Bridge, you can write Java applications that can interact with an Access database.

Unfortunately, applets enforce a security restriction that does not allow access to the local disk, so ODBC drivers might
not work in the applet context (inside a Web browser). A future release of the Java Development Kit (JDK) may change
or relax this security restriction. A workaround for Java-enabled Web browsers is being prepared, and by the time you
read this, it may very well be possible to use the JDBC-ODBC bridge. Using ODBC drivers in Java programs also
requires pre-installation of the ODBC drivers and JDBC-ODBC Bridge on the client machine. In contrast, JDBC drivers
that are 100 percent Java class files can be downloaded dynamically over the network, along with the calling applet’s
class file. I’ll provide a more thorough discussion of this point in Chapter 9.

Quick Start Guide

So you’re a regular Java hacker, and you’ve already figured out how to install the JDBC API package. Now you want to
jump right into it. This section will outline the four basic steps for running your first query and getting the results. The
steps are explained in greater detail in Chapter 4. Figure 3.1 is a diagram relating the four classes that you’ll call on in
your JDBC Java program, and it is the skeleton around which you can build database-aware Java programs. The diagram
does not list all of the methods available in the respective classes. See Chapter 12, the JDBC API reference, for the
complete class and method list.

Figure 3.1 The JDBC classes to call.

The following (Listing 3.1) is a very simple JDBC application that follows these four steps. It runs a query and gets one
row from the returned result. If you don’t understand everything going on here, don’t worry—it’s all explained in detail
in Chapter 4.

Listing 3.1 Example JDBC application.

import java.net.URL;
import java.sql.*;

class Select {
 public static void main(String argv[]) {
 try {
 new imaginary.sql.iMsqlDriver();
 String url = "jdbc:msql://elanor.oit.unc.edu:1112/bcancer";
 Connection con = DriverManager.getConnection(url, "prpatel", "");
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM Users");
 System.out.println("Got results:");
 while(rs.next()) {

 String UID= rs.getString(1);
 String Password= rs.getString(2);
 String Last= rs.getString(3);
 String First= rs.getString(4);
 String OfficeID= rs.getString(5);

 System.out.print(UID +" "+ Password+"
 "+Last+" "+First+" "+OfficeID);
 System.out.print("\n");

 }
 stmt.close();
 con.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Installing java.sql.*

The java.sql.* package contains the JDBC base API classes, which are supposed to be in the normal java.* hierachy that

javascript:displayWindow('images/03-01.jpg',424,582)
javascript:displayWindow('images/03-01.jpg',424,582)

is distributed as part of the Java API (which includes the java.awt, java.io, and java.lang packages). Currently, the JDBC
API is not distributed with the JDK, but it is slated to be included in the next release. I have a sneaking suspicion that the
java.sql.* package will also be included in the future APIs of popular Java-enabled Web browsers.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

However, you don’t have to wait for this updated software to be released. You can grab the JDBC API classes from the
accompanying CD-ROM or from the JavaSoft Web site at http://splash.java.com/jdbc. As I was writing this chapter, the
classes were stored in a file named “jdbc.100.tar.Z.” By the time you read this chapter, however, the file name may be
slightly different. Once you have your software, simply follow these easy instructions to install the API classes in the
proper place on your computer’s hard disk. The method shown here allows you to compile and run Java applications and
applets (using the Appletviewer) that use the JDBC:

1. Download the JDBC API package from the JavaSoft Web site or make a copy of the file from the CD-ROM.
2. On your hard drive, locate the directory that stores the Java API packages. (On my PC, the directory is C:
\JAVA\SRC, and on my Sun box, the directory is \usr\local\java\src.) You do not need to install the JDBC API
package in the same directory as the rest of the Java API, but I strongly recommend that you do because, as I
mentioned earlier, the JDBC API will soon be a standard part of the Java API distribution and will be packaged
in the Java API hierarchy.
3. Unpack the JDBC API classes using one of the following methods (for Unix-based machines or PCs),
substituting the location where you downloaded the JDBC class file and the location where you want to install
the JDBC classes.
Unix Procedure:

• To upack the file, enter prompt> uncompress \home\prpatel\jdbc.100.tar.Z.
• To create a jdbc directory with the classes and their source in separate directories, enter prompt> tar
xvf \home\prpatel\jdbc.100.tar.Z.
• To install the JDBC classes, enter prompt> cd \usr\local\java\src, then enter prompt> mv \home
\prpatel\jdbc\classes\java, and finally enter prompt> mv \home\prpatel\jdbc\src\java.

Windows 95 Procedure:
• Using a Windows 95 ZIP utility such as WinZip, uncompress and untar the file. Be sure the file
name ends with .tar when you uncompress the file so that utilities will recognize the file. Untar the file
to a tempory folder. Then do the following:
• Copy the java folder from the JDBC\CLASSES directory (from the temp directory where you
untarred the downloaded file) to the C:\JAVA\SRC directory.
• Copy the java folder from the JDBC\SRC directory to C:\JAVA\SRC.

4. Set the CLASSPATH to point to c:/usr/local/java/src (for Unix-based machines) or C:\JAVA\SRC (for PCs).
Again, remember to substitute your location if this is not where you installed the downloaded file.

Tip: Save the API documentation.
The only item left from the JDBC package you downloaded is the API documentation, which is in the jdbc
\html directory that was created when you untarred the downloaded file. You may want to save that somewhere
for reference. You can view the file using a Web browser.

I must stress that you should make sure that you have the CLASSPATH set properly. The package will be called in the
following way in your Java program:

import java.sql.*

http://splash.java.com/jdbc/

You need to point the CLASSPATH at the parent of the java directory you copied in Step 2, which is why we set the
CLASSPATH in Step 3. The package is contained in the java/sql/ folder, which is exactly as it should be according to
the calling code snippet above.

Registering And Calling JDBC Drivers

Now that we’ve installed the JDBC classes, let’s cover how you load a JDBC driver. Note that the java.sql.* must be
imported into your Java program if you want to use a JDBC driver. These JDBC base classes contain the necessary
elements for properly instantiating JDBC drivers, and they serve as the “middleman” between you and the low-level
code in the JDBC driver. The JDBC API provides you with an easy-to-use interface for interacting with data sources,
independent of the driver you are using. The following sections cover three different ways to tell the JDBC’s
DriverManager to load a JDBC driver.

The sql.drivers Property

When you want to identify a list of drivers that can be loaded with the DriverManager, you can set the sql.drivers
system property. Because this is a system property, it can be set at the command line using the -D option:

java -Dsql.drivers=imaginary.sql.iMsqlDriver classname

If there is more than one driver to include, just separate them using colons. If you do include more than one driver in this
list, the DriverManager will look at each driver once the connection is created and decide which one matches the JDBC
URL supplied in the Connection class’ instantiation. (I’ll provide more detail on the JDBC URL and the Connection
class later on.) The first driver specified in the URL that is a successful candidate for establishing the connection will be
used.

There’s Always A Class For A Name

You can explicitly load a driver using the standard Class.forName method. This technique is a more direct way of
instantiating the driver class that you want to use in the Java program. To load the mSQL JDBC driver, insert this line
into your code:

Class.forName("imaginary.sql.iMsqlDriver");

This method first tries to load the imaginary/sql/iMsqlDriver from the local CLASSPATH. It then tries to load the driver
using the same class loader as the Java program—the applet class loader, which is stored on the network.

Just Do It

Another approach is what I call the “quick and dirty” way of loading a JDBC driver. In this case, you simply instantiate
the driver’s class. Of course, I don’t advise you to take this route because the driver may not properly register with the
JDBC DriverManager. The code for this technique, however, is quite simple and worth mentioning:

new imaginary.sql.iMsqlDriver;

Again, if this is in the applet context, this code will first try to find this driver in the local CLASSPATH, then it will try
to load it from the network.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

JDBC URL And The Connection

The format for specifying a data source is an extended Universal Resource Locator (URL). The JDBC URL structure is
broadly defined as follows

jdbc:<subprotocol>:<subname>

where jdbc is the standard base, subprotocol is the particular data source type, and subname is an additional specification
that can be used by the subprotocol. The subname is based solely on the subprotocol. The subprotocol (which can be
“odbc,” “oracle,” etc.) is used by the JDBC drivers to identify themselves and then to connect to that specific
subprotocol. The subprotocol is also used by the DriverManager to match the proper driver to a specific subprotocol.
The subname can contain additional information used by the satisfying subprotocol (i.e. driver), such as the location of
the data source, as well as a port number or catalog. Again, this is dependent on the subprotocol’s JDBC driver. JavaSoft
suggests that a network name follow the URL syntax:

jdbc:<subprotocol>://hostname:port/subsubname

The mSQL JDBC driver used in this book follows this syntax. Here’s the URL you will see in some of the example
code:

jdbc:msql://mycomputer.com:1112/databasename

The DriverManager.getConnection method in the JDBC API uses this URL when attempting to start a connection.
Remember that a valid driver must be registered with the JDBC DriverManager before attempting to create this
connection (as I discussed earlier in the Registering and Calling JDBC Drivers section). The DriverManager.
getConnection method can be passed in a Property object where the keys “user,” “password,” and even “server” are set
accordingly. The direct way of using the getConnection method involves passing these attributes in the constructor. The
following is an example of how to create a Connection object from the DriverManager.getConnection method. This
method returns a Connection object which is to be assigned to an instantiated Connection class:

String url="jdbc:msql://mydatabaseserver.com:1112/databasename";
Name = "pratik";
password = "";
Connection con;
con = DriverManager.getConnection(url, Name, password);
// remember to register the driver before doing this!

Chapter 4 shows a complete example of how to use the DriverManager and Connection classes, as well as how to
execute queries against the database server and get the results.

Using ODBC Drivers

In an effort to close the gap between existing ODBC drivers for data sources and the emerging pure Java JDBC drivers,
JavaSoft and Intersolv released the JDBC-ODBC Bridge. Note that there is a Java interface (hidden as a JDBC driver
called JdbcOdbcDriver and found in the jdbc/odbc/ directory below) that does the necessary JDBC to ODBC translation
with the native method library that is part of the JDBC-ODBC bridge package. Although Chapter 5 covers the inner
workings of the Bridge, I would like to show you how to install it here. Once the Bridge is set up, the JDBC handles
access to the ODBC data sources just like access to normal JDBC drivers; in essence, you can use the same Java code
with either JDBC drivers or ODBC drivers that use the Bridge—all you have to do is change the JDBC URL to reflect a
different driver.

Installing The JDBC-ODBC Bridge

There are three steps to installing the JDBC-ODBC Bridge. You’ll need to get the package first. Look on the CD-ROM,
or grab the latest version from JavaSoft’s Web site at http://splash.javasoft.com/jdbc.

1. Uncompress the package.
2. Move the jdbc directory (located in the jdbc-odbc/classes directory) into a directory listed in your
CLASSPATH, or move it to your regular Java API tree.
3. Move JdbcOdbc.dll into your java/bin directory to make sure that the system and Java executables can find
the file. You can also:
For Unix:

• Add the path location of the JdbcOdbc.dll to your LD_LIBRARY_PATH, or move the DLL into a
directory covered by this environment variable.

For Windows 95:
• Move the DLL into the \WINDOWS\SYSTEM directory.

Setting Up ODBC Drivers

The data sources for the ODBC driver and the drivers themselves must be configured before you can run Java programs
that access them. Consult your platform documentation and ODBC server’s documentation for specific information.

One of the great features of the Bridge is that it allows you to use existing data sources to start developing database-
aware Java applications. And with Access, you don’t even need a database server! In Chapter 11, I present the full
source code for writing an application server that can use the JDBC-ODBC Bridge, the Access ODBC drivers that come
with Access 95, and an Access database to develop Java applets that can interact with a database without having a
database server.

To set up an Access database for ODBC, follow these steps (I’m assuming that you are using Windows 95):

1. Make sure you have the Access 95 ODBC drivers installed. These ODBC drivers can be installed from the
Access install program.
2. Select Start Menu|Settings|Control Panels.
3. Click on 32 bit ODBC.
4. Click on the Add button and choose the Access Driver.
5. Type in a Data Source Name and Description (anything you like).
6. In the Database area, click on Select.
7. Select the Access database file; a sample database is located in MSoffice\ACCESS\Samples (if you installed
it during the Access installation). However, you can specify any Access database you want.
8. You may want to click on the Advanced button and set the Username and Password. Click on OK and then
on Close to complete the configuration.

That is all you need to do to set up the ODBC data source. Now you can write Java applications to interact with the data
source on the machine in which you performed the configuration; the ODBC driver is not directly accessible over the
network. You can access the data source by using the name you supplied in Step 5. For example, the URL would be
something like

http://splash.javasoft.com/jdbc/

jdbc:odbc:DataSourceName

and the statement

Class.forName("jdbc.odbc.JdbcOdbcDriver")

would load the JDBC-ODBC bridge.

Summary

The next chapter works through a complete example of using a JDBC driver. I use the mSQL driver to query an mSQL
database server over the network. The JDBC driver can easily be changed to use an ODBC driver or another JDBC
driver to connect to a different data source.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 4
The Interactive
SQL Applet

Now that you have seen how to use JDBC drivers, it’s time we ante up. In this chapter, we jump into the JDBC with an
example applet that we’ll build on and derive from through the rest of the book. Our Interactive Query applet will
accomplish a number of tasks. It will:

• Connect to a database server, using a JDBC driver
• Wait for a user to enter an SQL query for the database server to process
• Display the results of the query in another text area

Of course, before we can get to the programming details of the applet, we need to take a step back, review the basics,
and put together a plan. I know, plans take time to develop, and you want to get into the good stuff right away. But trust
me, we’ll be saving ourselves a lot of trouble later on by figuring out just the right way to get to where we want to go.

Your First JDBC Applet

Our first step in creating a quality applet is understanding exactly what we need to do. This section covers some applet
basics, at a high level. We’ll begin by discussing the functionality of the Interactive Query applet, and then we’ll explore
how to fit the data-aware components contained in the JDBC into the Java applet model. As I said before, every great
program starts with a well-thought-out plan, so we’ll work through the steps to create one. If you are familiar with Java,
take the time to at least review the following section before moving on to Getting A Handle On The JDBC Essentials.
However, if you are unsure about what an applet really is, and why it’s different from a generic application, you will
want to read this section all the way through.

The Blueprint

The applet structure has a well-defined flow, and is an event-driven development. Let’s begin by defining what we want
the SQL query applet to do at a high level. First, we want to connect to a database, which requires some user input: the
database we want to connect to, a user name, and, possibly, a password. Next, we want to let the user enter an SQL
query, which will then be executed on the connected data source. Finally, we need to retrieve and display the results of
the query. We’ll make this applet as simple as possible (for now), so that you understand the details of using the JDBC
API and have a firm grasp of the foundations of making database-aware Java applets.

Our next task is to fill in some of the technical details of our plan. The absolute first thing we need to do, besides setting
up the constructors for the various objects we use, is design and layout the user interface. We aren’t quite to that phase
yet (remember, we’re still in the planning phase), so we’ll defer the design details for a later section of this chapter, The
Look of the Applet.

We need to get some preliminary input from the user; we need to have some event handlers to signal the applet that the
user has entered some information that needs to be processed, like the SQL query. Finally, we need to clean up when the

applet is terminated, like closing the connection to the data source.

Figure 4.1 shows the flow diagram for the applet. As you can see, we do most of our real work in the Select method. The
dispatcher is the event handler method, handleEvent(). We use several global objects so that we don’t have to pass
around globally used objects (and the data contained within). This approach also adds to the overall efficiency; the code
shows how to deal with some of the events directly in the event handler.

Figure 4.1 Flow diagram of the Interactive Query applet.

The Applet “Four-Step”

As indicated in Figure 4.2, Java applets have a distinct life cycle of four basic steps: initialization, execution,
termination, and clean up. It’s often unnecessary to implement all four, but we can use them to our advantage to make
our database-aware applet more robust. Why does an applet have this flow? Applets run inside a Java Virtual Machine
(JVM), or Java interpreter, like the one embedded within a Java-enabled Web browser. The interpreter handles the
allocation of memory and resources for the applet, thus the applet must live within the context of the JVM. This is a pre-
defined specification of the Java environment, designed to control the applet’s behavior. Note that Java applications do
not follow this life-cycle, as they are not bound to run in the context of Java applets. Here’s a synopsis of what the four
overridable methods, or steps, do in the context of Java applets:

Figure 4.2 An applet’s life cycle.

• init This is the method called when the applet is first started. It is only called once, and it is the place where
the initialization of objects (via construction or assignment) should be done. It is also a good place to set up the
user interface.
• start Once the applet has been initialized, this method is called to begin the execution of the applet. If you are
using threads, this is the ideal place to begin threads that you create to use in the applet. This method is called
when the Web browser (or appletviewer) becomes active; that is, when the user brings up the window or
focuses attention to the window.
• stop This method is called when the applet window (which can be within a Web browser) becomes inactive.
For instance, iconifying the Web browser calls this method. This can be used to suspend the execution of the
applet when the user’s attention is somewhere else.
• destroy Before the applet is wiped from memory and its resources returned to the operating system, this
method is called. This is a great place to flush buffers and close connections, and generally to clean house.

As I said earlier, you don’t need to have all four steps in your applet. For instance, our simple applet doesn’t need the
start and stop methods. Because we aren’t running an animation or any other CPU-consuming process continuously, we
aren’t stealing many precious system cycles. Besides, if you are connected to a database across the Internet and execute a
query that takes time to process and download the results from, you may want to check your email instead of staring at

javascript:displayWindow('images/04-01.jpg',535,640)
javascript:displayWindow('images/04-01.jpg',535,640)
javascript:displayWindow('images/04-02.jpg',496,354)
javascript:displayWindow('images/04-02.jpg',496,354)

the computer while the applet is working. These methods are meant to be overriden, since a minimal “default” for each
method exists; the default depends on the individual intended function of the four methods.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Events To Watch For

The flow chart in Figure 4.1 shows some of the events we want to process. In this applet, we are only looking for
keystrokes and mouse clicks. We override the handleEvent method to allow us to program for these events. We use the
target property of the Event object, which is passed into the event handler, to look for a specific object. Then we can
look for more specific events. Listing 4.1 contains a snippet of code that shows how we deal with the user entering a
name in the TextArea NameField.

Listing 4.1 Trapping for the Enter key event in a specific object.

if (evt.target == NameField)
 {char c=(char)evt.key;
 if (c == '\n')
 { Name=NameField.getText();
 return true;
 }
 else { return false; }
 }

The object evt is the local instantiation of the Event parameter that is part of the handleEvent method, as we’ll see later
in the complete source code listing. We use the target property to see which object the event occurred in, then we look at
the key property to see if the Enter key was pressed. The Java escape sequence for Enter is \n. The rest of the code
shown in the listing is fairly straightforward: We compare the pressed key to the “enter” escape sequence, and if we
come up with a match, we set the Name string variable to the text in the NameField using the TextArea getText
method. Because we have processed the event, and we want to let the rest of the event handler know that we’ve dealt
with it, we return true. If this wasn’t the key we were looking for in this specific object (NameField), we would return
false so that the other event handling code could attempt to process this event.

Finishing Up

One of Java’s great strengths lies in its ability to automatically allocate and de-allocate memory for objects created in the
program, so the programmer doesn’t have to. We primarily use the destroy method to close the database connection that
we open in the applet. The JDBC driver that we used to connect to the data source is alerted to the fact that the program
is exiting, so it can gracefully close the connection and flush input and output buffers.

Getting A Handle On The JDBC Essentials: The Complete Applet Source Code

Okay, enough talk, let’s get busy! The complete source code is shown in Listings 4.2 though 4.9. The HTML file that we
use to call our applet is shown in Listing 4.10. I bet you’re not too keen on entering all that code. But wait! There’s no
need to type it all in, just pull out the CD-ROM and load the source into your favorite editor or IDE. Don’t forget,
though, that you need to have the JDBC driver installed, and you may need your CLASSPATH set so that the applet can
find the driver. If you’re planning on loading the driver as a class along with the applet, make sure you put the driver in
the same place as the applet. See Chapter 3 if you have trouble getting the applet to run and you keep getting the “Can’t

Find a Driver” or “Class not found” error.

Tip: Source code on the CD-ROM.
There’s no need to type in the source code because the Interactive Query applet can be found on the CD-ROM,
as is true for all source code in this book.

The Look Of The Applet

As I promised earlier, we’re going to cover the details of user interface design and layout. Listing 4.2 covers the
initialization of the user interface, as well as the normal “preliminaries” associated with Java programs. To help you
along, I’ve included some comments to elaborate on the fine points that will help you to understand what’s going on and
what we are doing.

Listing 4.2 Setting up the objects.

import java.net.URL;
import java.awt.*;
import java.applet.Applet;
// These are standard issue with applets, we need the net.URL
// class because the database identifier is a glorified URL.

import java.sql.*;
// These are the packages needed to load the JDBC kernel, known as the
// DriverManager.
import imaginary.sql.*;
// These are the actual driver classes! We are using the msql JDBC
// drivers to access our msql database.

public class IQ extends java.applet.Applet {
// This is the constructor for the base applet. Remember that the applet
// name must match the file name the applet is stored in--this applet
// should be saved in a file called "IQ.java".

 Button ConnectBtn = new Button("Connect to Database");
 TextField QueryField = new TextField(40);
 TextArea OutputField = new TextArea(10,75);
 TextField NameField = new TextField(40);
 TextField DBurl = new TextField(40);
 Connection con;
// Here we create the objects we plan to use in the applet.
// The Connection object is part of the JDBC API, and is the primary way
// of tying the JDBC's function to the applet.

 String url = "";
 String Name = "";

GridBagLayout: It’s Easier Than It Seems!

In Listing 4.2, we set up the objects we’ll be using in the user interface. We loaded the necessary classes and the specific
driver we will use in the applet. In Listing 4.3, we go through the init phase of the applet, where we set up the user
interface. We use GridBagLayout, a Java layout manager, to position the components in the applet window.
GridBagLayout is flexible and offers us a quick way of producing an attractive interface.

Listing 4.3 Setting up the user interface.

public void init() {
 QueryField.setEditable(true);
 OutputField.setEditable(false);
 NameField.setEditable(true);
 DBurl.setEditable(true);
// We want to set the individual TextArea and TextField to be editable so
// the user can edit the OutputField, where we plan on showing the
// results of the query.

 GridBagLayout gridbag = new GridBagLayout();
 GridBagConstraints Con = new GridBagConstraints();
// create a new instance of GridBagLayout and the complementary
// GridBagConstraints.

 setLayout(gridbag);
// Set the layout of the applet to the gridbag that we created above.
 setFont(new Font("Helvetica", Font.PLAIN, 12));
 setBackground(Color.gray);
// Set the font and color of the applet.

 Con.weightx=1.0;
 Con.weighty=0.0;
 Con.anchor = GridBagConstraints.CENTER;
 Con.fill = GridBagConstraints.NONE;
 Con.gridwidth = GridBagConstraints.REMAINDER;

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

This code requires some explanation. The weightx and weighty properties determine how the space in the respective
direction is distributed. If either weight property is set to 0, the default, any extra space is distributed around the outside
of the components in the corresponding direction. The components are also centered automatically in that direction. If
either weight property is set to 1, any extra space is distributed within the spaces between components in the
corresponding direction. Hence, in setting the weightx=1, we have told the GridBagLayout layout manager to position
the components on each row so that extra space is added equally between the components on that row. However, the
rows of components are vertically “clumped” together because the weighty property is set to 0.0. Later on, we’ll change
weighty to 1 so that the large TextArea (the OutputField) takes up extra space equal to all the components added before
it. Take a look at Figure 4.3, shown at the end of the chapter, to see what I mean.

We also set the anchor property to tell the GridBagLayout to position the components on the center, relative to each
other. The fill property is set to NONE so that the components are not stretched to fill empty space. You will find this
technique to be useful when you want a large graphics area (Canvas) to take up any empty space that is available around
it, respective to the other components. The gridwidth is set to REMAINDER to signal that any component assigned the
GridBagContstraint Con takes up the rest of the space on a row. Similarly, we can set gridheight to REMAINDER so
that a component assigned this constraint takes up the remaining vertical space. The last detail associated with
GridBagLayout involves assigning the properties to the component. This is done via the setConstraints method in
GridBagLayout.

Listing 4.4 shows how we do this. Notice that we assign properties for the TextArea, but not for the Labels. Because
we’re positioning the Labels on the “right” side of the screen (the default), there is no need to assign constraints. There
are more properties you can set with GridBagLayout, but it’s beyond the scope of this book.

Listing 4.4 Assigning properties to components.

 add(new Label("Name"));
 gridbag.setConstraints(NameField, Con);
 add(NameField);
// Note that we did not setConstraints for the Label. The GridbagLayout
// manager assumes they carry the default constraints. The NameField is
// assigned to be the last component on its row via the constraints Con,
// then added to the user interface.

 add(new Label("Database URL"));
 gridbag.setConstraints(DBurl, Con);
 add(DBurl);

 gridbag.setConstraints(ConnectBtn, Con);
 add(ConnectBtn);
// Here, we only want the ConnectBtn button on a row, by itself, so we
// set the constraints, and add it.

 add(new Label("SQL Query"));
 gridbag.setConstraints(QueryField, Con);
 add(QueryField);

 Label result_label = new Label("Result");
 result_label.setFont(new Font("Helvetica", Font.PLAIN, 16));
 result_label.setForeground(Color.blue);
 gridbag.setConstraints(result_label, Con);
 add(result_label);
// Here we add a label on its own line. We also set the colors for it.

 Con.weighty=1.0;
 gridbag.setConstraints(OutputField, Con);
 OutputField.setForeground(Color.white);
 OutputField.setBackground(Color.black);
 add(OutputField);
// This is what we were talking about before. We want the large OutputField to
// take up as much of the remaining space as possible, so we set the
// weighty=1 at this point. This sets the field apart from the previously
// added components, and gives it more room to exist in.

 show();
 } //init

Everything has been added to the user interface, so let’s show it! We also don’t need to do anything else as far as
preparation, so that ends the init method of our applet. Now we can move on to handling events.

Handling Events

We want to watch for four events when our applet is running: the user pressing the Enter key in the DBurl, NameField,
and QueryField TextAreas, and the user clicking on the Connect button. Earlier in the chapter, we saw how to watch for
events, but now we get to see what we do once the event is trapped, as shown in Listing 4.5. The event handling code is
contained in the generic handleEvent method.

Listing 4.5 Handling events.

public boolean handleEvent(Event evt) {
// The standard format for this method includes the Event class where
// all the properties are set.

 if (evt.target == NameField)
 {char c=(char)evt.key;
// Look for the Enter key pressed in the NameField.
 if (c == '\n')
 { Name=NameField.getText();
// Set the global Name variable to the contents in the NameField.
 return true;
 }
 else { return false; }
 }

if (evt.target == DBurl)
 {char c=(char)evt.key;
// Look for the enter key pressed in the DBurl TextArea.
 if (c == '\n')
 { url=DBurl.getText();
// Set the global url variable to the contents of the DBurl TextArea.
 return true;
 }

 else { return false; }
 }

if (evt.target == QueryField)
 {char c=(char)evt.key;
// Look for the Enter key pressed in the QueryField.
 if (c == '\n')
 {
 OutputField.setText(Select(QueryField.getText()));
// Get the contents of the QueryField, and pass them to the Select
// method that is defined in Listing 4.7. The Select method executes the
// entered query, and returns the results. These results are shown in the
// OutputField using the setText method.
 return true;
 }
 else { return false; }
 }

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Opening The Connection

Our next step is to connect to the database that will process the user’s query, as shown in Listing 4.6.

Listing 4.6 Opening a database connection.

if (evt.target == ConnectBtn)
 {
// If the user clicks the "Connect" button, connect to the database
// specified in the DBurl TextArea and the user name specified in the
// NameField TextArea.

 url=DBurl.getText();
 Name=NameField.getText();
 try {
 new imaginary.sql.iMsqlDriver();
// This creates a new instance of the Driver we want to use. There are a
// number of ways to specify which driver you want to use, and there is
// even a way to let the JDBC DriverManager choose which driver it thinks
// it needs to connect to the data source.

 con = DriverManager.getConnection(url, Name, "");
// Actually make the connection. Use the entered URL and the entered
// user name when making the connection. We haven't specified a password,
// so just send nothing ("").
 ConnectBtn.setLabel("Reconnect to Database");
// Finally, change what the ConnectBtn to show "Reconnect to Database".
 }
 catch(Exception e) {
 e.printStackTrace();
 OutputField.setText(e.getMessage());
 }
// The creation of the connection throws an exception if there was a
// problem connecting using the specified parameters. We have to enclose
// the getConnection method in a try-catch block to catch any
// exceptions that may be thrown. If there is a problem and an exception
// thrown, print it out to the console, and to the OutputField.

 return true;
 }
return false;
} // handleEvent() end

No Guts, No Glory: Executing Queries And Processing Results

Now that we have opened the connection to the data source (Listing 4.6), it’s time to set up the mechanism for executing
queries and getting the results, as shown in Listings 4.7 and 4.8. The parameter that we need in this method is a String
containing the SQL query the user entered into the QueryField. We will return the results of the query as a string because
we only want to pipe all of the results into the OutputField TextArea. We cast all of the returned results into a
String—however, if the database contains binary data, we could get some weird output, or even cause the program to
break. When I tested the applet, the data source that I queried contained numerical and strings only. In Chapter 7, I’ll
show you how to deal with different data types in the ANSI SQL-2 specification, upon which the data types for the
JDBC are based.

Listing 4.7 Executing a statement.

public String Select(String QueryLine) {
// This is the method we called above in Listing 4.5.
// We return a String, and use a String parameter for the entered query.

 String Output="";
 int columns;
 int pos;
 try {
// Several of the following methods can throw exceptions if there was a
// problem with the query, or if the connection breaks, or if
// we improperly try to retrieve results.

 Statement stmt = con.createStatement();
// First, we instantiate a Statement class that is required to execute
// the query. The Connection class returns a Statement object in its
// createStatement method, which links the opened connection to
// the passed-back Statement object. This is how the stmt instance
// is linked to the actual connection to the data source.

 ResultSet rs = stmt.executeQuery(QueryLine);
// The ResultSet in turn is linked to the connection to the data source
// via the Statement class. The Statement class contains the executeQuery
// method, which returns a ResultSet class. This is analagous to a
// pointer that can be used to retrieve the results from the JDBC
// connection.

 columns=(rs.getMetaData()).getColumnCount();
// Here we use the getMetaData method in the result set to return a
// Metadata object. The MetaData object contains a getColumnCount
// method which we use to determine how many columns of data
// are present in the result. We set this equal to an integer
// variable.

Listing 4.8 Getting the Result and MetaData Information.

 while(rs.next()) {
// Now, we use the next method of the ResultSet instance rs to fetch
// each row, one by one. There are more optimized ways of doing
// this--namely using the inputStream feature of the JDBC driver.
// I show you an example of this in Chapter 9.

 for(pos=1; pos<=columns; pos++) {
// Now let's get each column in the row (each cell), one by one.

 Output+=rs.getObject(pos)+" ";
// Here we've used the general method for getting a result. The

// getObject method will attempt to caste the result in the form
// of its assignee, in this case the String variable Output.
// We simply get each "cell" and add a space to it, then append it onto
// the Output variable.

 }
// End for loop (end looping through the columns for a specific row).

 Output+="\n";
// For each row that we fetch, we need to add a carriage return so that
// the next fetched row starts on the next line.
 }
// End while loop (end fetching rows when no more rows are left).

 stmt.close();
// Clean up, close the stmt, in effect, close the input-output query
// connection streams, but stay connected to the data source.
 }
 catch(Exception e) {
 e.printStackTrace();
 Output=e.getMessage();
 }
// We have to catch any exceptions that were thrown while we were
// querying or retrieving the data. Print the exception
// to the console and return it so it can be shown to the user
// in the applet.

return Output;
// Before exiting, return the result that we got.
 }

Wrapping It Up

The last part of the applet, shown in Listing 4.9, involves terminating the connection to the data source. This is done in
the destroy method of the applet. We have to catch an exception, if one occurs, while the close method is called on the
connection.

Listing 4.9 Terminating the connection.

public void destroy() {

 try {con.close();}
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }
 } // end destroy
} // end applet IQ

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

The HTML File That Calls The Applet

We need to call this applet from an HTML file, which is shown in Listing 4.10. We don’t pass in any properties, but we
could easily include a default data source URL and user name that the applet would read in before initializing the user
interface, and then set the appropriate TextField to show these defaults. Note that we set the width and height carefully
in the <APPLET> tag. This is to make sure that our applet’s user interface has enough room to be properly laid out.

Listing 4.10 HTML code to call the interactive query applet.

<HTML>
<HEAD>
<TITLE>JDBC Client Applet - Interactive SQL Command Util</TITLE>
</HEAD>
<BODY>
<H1>Interactive JDBC SQL Query Applet</H1>
<hr>

<applet code=IQ.class width=450 height=350>
</applet>

<hr>
</BODY>
</HTML>

The Final Product

Figure 4.3 shows a screen shot of the completed applet, and Figure 4.4 shows the applet running. Not too shabby for our
first try. We’ve covered a lot of ground in creating this applet, so let’s take some time to recap the important details. We
learned how to:

Figure 4.3 The completed Interactive Query applet.

javascript:displayWindow('images/04-03.jpg',458,432)
javascript:displayWindow('images/04-03.jpg',458,432)

Figure 4.4 The Interactive Query applet running.

• Open a connection to a data source
• Connect a Statement object to the data source via the connection
• Execute a query
• Get MetaData information about the result of the query
• Use the MetaData information to properly get the results row-by-row, column-by-column
• Close the connection

To use the applet, you can load the HTML file in a Java-enabled Web browser, or you can start the applet from the
command line:

bash$ appletviewer IQ.html &

Don’t forget, if you have problems finding the class file or the driver, set the CLASSPATH. See Chapter 3 for more help
on this topic.

Coming Up Next

In the next chapter, we’ll explore the bridge between ODBC and JDBC. You’ll see how easy it is to use existing ODBC
drivers with JDBC, and learn some of the fine points of the relation, similarity, and difference between the two database
connectivity standards. You won’t want to miss this one; the author, Karl Moss, is also the author of the Sun/Intersolv
ODBC-JDBC bridge included in the JDBC package.

Previous Table of Contents Next

javascript:displayWindow('images/04-04.jpg',458,432)
javascript:displayWindow('images/04-04.jpg',458,432)

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 5
Accessing ODBC Services Using JDBC

One of JavaSoft’s first tasks in developing the JDBC API was to get it into the hands of developers. Defining the API
specification was a major step, but JDBC drivers must be implemented in order to actually access data. Because ODBC
has already established itself as an industry standard, what better way to make JDBC usable by a large community of
developers than to provide a JDBC driver that uses ODBC. JavaSoft turned to Intersolv to provide resources to develop a
bridge between the two, and the resulting JDBC driver—the Bridge—is now included with the Java Developer’s kit.

The Bridge works great, but there are some things you need to understand before you can implement it properly. In this
chapter, we’ll cover the requirements necessary to use the Bridge, the limitations of the Bridge, and the most elegant way
to make a connection to a JDBC URL. I’ll also provide you with a list of each JDBC method and the corresponding
ODBC call (broken down by the type of call).

Bridge Requirements

One thing to note about the JDBC-ODBC Bridge is that it contains a very thin layer of native code. This library’s sole
purpose is to accept an ODBC call from Java, execute that call, and return any results back to the driver. There is no
other magic happening within this library; all processing, including memory management, is contained within the Java
side of the Bridge. Unfortunately, this means that there is a library containing C code that must be ported to each of the
operating systems that the Bridge will execute on. This is obviously not an ideal situation, and invalidates one of Java’s
major advantages—portability. So, instead of being able to download Java class files and execute on the fly, you must
first install and configure additional software in order to use the Bridge. Here’s a short checklist of required components:

• The Java Developer’s Kit
• The JDBC Interface classes (java.sql.*)
• The JDBC-ODBC Bridge classes (jdbc.odbc.* or sun.jdbc.odbc.* for JDBC version 1.1 and higher)
• An ODBC Driver Manager (such as the one provided by Microsoft for Win95/NT); do not confuse this with
the JDBC DriverManager class
• Any ODBC drivers to be used from the Bridge (from vendors such as Intersolv, Microsoft, and Visigenic)

Before actually attempting to use the Bridge, save yourself lots of headaches—be sure to test the ODBC drivers that you
will be using! I have pursued countless reported problems that ended up being nothing more than an ODBC
configuration issue. Make sure you setup your data sources properly, and then test them to make sure you can connect
and perform work. You can accomplish this by either using an existing tool or writing your own sample ODBC
application. Most vendors include sample source code to create an ODBC application, and Microsoft provides a tool
named Gator (a.k.a ODBCTE32.EXE) which can fully exercise ODBC data sources on Win95/NT.

The Bridge Is Great, But...

All looks good for the Bridge; it gives you access to any ODBC data source, and it’s free! But wait, there are a few
limitations that I need to make you aware of before you start.

First, as I mentioned before, a lot of software must be installed and configured on each system that will be using the
Bridge. In today’s environment, this feat cannot be accomplished automatically. Unfortunately, this task can be a major
limitation, not only from the standpoint of getting the software installed and configured properly, but ODBC drivers may
not be readily available (or may be quite costly) for the operating system that you are using.

Second, understand the limitations of the ODBC driver that you will be using. If the ODBC driver can’t do it, neither can
the Bridge. The Bridge is not going to add any value to the ODBC driver that you are using other than allowing you to
use it via JDBC. One of the most frequently asked questions I get is: “If I use the Bridge, can I access my data over the
Internet?” If the ODBC driver that you are using can, then the Bridge can; if it can’t, then neither can the Bridge.

Third, keep in mind the quality of the ODBC driver. In order for the Bridge to properly use an ODBC driver, it must be
ODBC version 2.0 or higher. Also, if there are bugs in the ODBC driver, they will surely be present when you use it
from JDBC.

Finally, there are Java security considerations. From the JDBC API specification, all JDBC drivers must follow the
standard security model, most importantly:

• JDBC should not allow untrusted applets access to local database data
• An untrusted applet will normally only be allowed to open a database connection back to the server from
which it was downloaded

For trusted applets and any type of application, the Bridge can be used in any fashion to connect to any data source. For
untrusted applets, the prognosis is bleak. Untrusted applets can only access databases on the server from which they were
downloaded. Normally, the Java Security Manager will prohibit a TCP connection from being made to an unauthorized
hostname; that is, if the TCP connection is being made from within the Java Virtual Machine (JVM). In the case of the
Bridge, this connection would be made from within the ODBC driver, outside the control of the JVM. If the Bridge
could determine the hostname that it will be connected to, a call to the Java Security Manager could easily check to
ensure that a connection is allowed. Unfortunately, it is not always possible to determine the hostname for a given
ODBC data source name. For this reason, the Bridge always assumes the worst. An untrusted applet is not allowed to
access any ODBC data source. What this means is that if you can’t convince the Internet browser in use that an applet is
trusted, you can’t use the Bridge from that applet.

The ODBC URL

To make a connection to a JDBC driver, you must supply a URL. The general structure of the JDBC URL is

jdbc:<subprotocol>:<subname>

where subprotocol is the kind of database connectivity being requested, and subname provides additional information for
the subprotocol. For the Bridge, the specific URL structure is:

jdbc:odbc:<ODBC datasource name>[;attribute-name=attribute-value]...

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

The Bridge can only provide services for URLs that have a subprotocol of odbc. If a different subprotocol is given, the
Bridge will simply tell the JDBC DriverManager that it has no idea what the URL means, and that it can’t support it.
The subname specifies the ODBC data source name to use, followed by any additional connection string attributes.
Here’s a code snippet that you can use to connect to an ODBC data source named Accounting, with a user name of
dept12 and a password of Julie:

// Create a new instance of the JDBC-ODBC Bridge.

new jdbc.odbc.JdbcOdbcDriver();

// The JDBC-ODBC Bridge will have registered itself with the JDBC
// DriverManager. We can now let the DriverManager choose the right
// driver to connect to the given URL.

Connection con = DriverManager.getConnection("jdbc:odbc:Accounting",
 "dept12", "Julie");

An alternative way of connecting to this same data source would be to pass the user name and password as connection
string attributes:

Connection con = DriverManager.getConnection("jdbc:odbc:Accounting;UID=
 dept12;PWD=Julie");

A third, more robust way of connecting would be to use a java.util.Properties object. DriverManager.getConnection
is overloaded to support three versions of the interface:

public static synchronized Connection getConnection(String url, String
 user, String password) throws SQLException;
public static synchronized Connection getConnection(String url);
public static synchronized Connection getConnection(String url,
 java.util.Properties info);

The third method listed here is by far the most elegant way of connecting to any JDBC driver. An intelligent Java
application/applet will use Driver.getPropertyInfo (which will not be covered here) to get a list of all of the required
and optional properties for the driver. The Java program can then prompt the user for this information, and then create a
java.util.Properties object that contains an element for each of the driver properties to be used for the JDBC
connection. The following code shows how to setup the java.util.Properties object:

// Create the Properties object.

java.util.Properties prop = new java.util.Properties();

// Populate the Properties object with each property to be passed to the
// JDBC driver.

prop.put("UID", "dept12");
prop.put("PWD", "Julie");

Connection con = DriverManager.getConnection("jdbc:odbc:Accounting",
 prop);

JDBC To ODBC Calls: A Roadmap

For all of you ODBC junkies, Tables 5.1 through 5.8 show each JDBC method and the corresponding ODBC call (only
JDBC methods that actually make an ODBC call are included). I can hear you now: “But isn’t this a closely guarded
national secret? What if someone takes this information to write another Bridge?” First of all, the information provided
here can be easily gathered by turning on the JDBC logging facility (DriverManager.setLogStream). The Bridge is
nice enough to log every ODBC call as it is made, providing a log stream has been set via the DriverManager (all good
JDBC drivers should provide adequate logging to aid in debugging). And second, the Bridge is provided for free. No one
could possibly take this information to create a better Bridge at a lower price. It simply can’t be done. I provide this
information in an effort to help you better understand how the Bridge operates, and, if you are well versed in ODBC, to
give you the direct correlation between the Bridge and ODBC. This should enable you to write advanced JDBC
applications right off the starting line.

Table 5.1Driver ODBC calls.

JDBC Interface Method ODBC Call Comments

connect SQLDriverConnect The Bridge creates a connection string using the
java.util. Properties attribute given

getPropertyInfo SQLBrowseConnect Each property returned is converted into a
DriverPropertyInfo object

Table 5.2Connection ODBC calls.

JDBC Interface Method ODBC Call Comments

prepareStatement SQLPrepare Prepares the statement for use with IN
parameters

prepareCall SQLPrepare Prepares the statement for use with IN and
OUT parameters (JDBC has not defined the
use of IN/OUT parameters together)

nativeSQL SQLNativeSql Converts the given SQL into native format,
expanding escape sequences

setAutoCommit SQLSetConnectOption fOption = SQL_AUTOCOMMIT

getAutoCommit SQLGetConnectOption fOption = SQL_AUTOCOMMIT

commit SQLTransact fType = SQL_COMMIT

rollback SQLTransact fType = SQL_ROLLBACK

close SQLFreeConnect Frees the connection handle associated with
the connection

setReadOnly SQLSetConnectOption fOption = SQL_ACCESS_MODE; this is
only a hint to the ODBC driver; the
underlying driver may not actually change its
behavior

isReadOnly SQLGetConnectOption fOption = SQL_ACCESS_MODE

setCatalog SQLSetConnectOption fOption = SQL_CURRENT_
QUALIFIER

getCatalog SQLGetInfo fInfoType = SQL_DATABASE_NAME

setTransactionIsolation SQLSetConnectOption fOption = SQL_TXN_ISOLATION

getTransactionIsolation SQLGetConnectOption fOption = SQL_TXN_ISOLATION

setAutoClose

ODBC does not provide a method to modify
this behavior

getAutoClose SQLGetInfo fInfoType = SQL_CURSOR_COMMIT_
BEHAVIOR and fInfoType =
SQL_CURSOR_
ROLLBACK_BEHAVIOR; the Bridge
makes both calls, and if either are true, then
getAutoClose returns true

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Table 5.3DatabaseMetaData ODBC calls.

JDBC Interface
Method ODBC Call Comments

allProceduresAreCallable SQLGetInfo fInfoType = SQL_ACCESSABLE_
PROCEDURES

allTablesAreSelectable SQLGetInfo fInfoType = SQL_ACCESSABLE_
TABLES

getUserName SQLGetInfo fInfoType = SQL_USER_NAME

isReadOnly SQLGetInfo fInfoType = SQL_DATA_
SOURCE_READ_ONLY

nullsAreSortedHigh SQLGetInfo fInfoType = SQL_NULL_COLLATION; result must be
SQL_NC_HIGH

nullsAreSortedLow SQLGetInfo fInfoType = SQL_NULL_COLLATION; result must be
SQL_NC_LOW

nullsAreSortedAtStart SQLGetInfo fInfoType = SQL_NULL_COLLATION; result must be
SQL_NC_START

nullsAreSortedAtEnd SQLGetInfo fInfoType = SQL_NULL_COLLATION; result must be
SQL_NC_END

getDatabaseProductName SQLGetInfo fInfoType = SQL_DBMS_NAME

getDatabaseProductVersion SQLGetInfo fInfoType = SQL_DBMS_VER

usesLocalFiles SQLGetInfo fInfoType = SQL_FILE_USAGE; the result must be
SQL_FILE_QUALIFIER

usesLocalFilePerTable SQLGetInfo fInfoType = SQL_FILE_USAGE; the result must be
SQL_FILE_TABLE

supportsMixedCaseIdentifiers SQLGetInfo fInfoType = SQL_IDENTIFIER_CASE; the result must
be SQL_IC_UPPER, SQL_IC_LOWER or
SQL_IC_MIXED

storesUpperCaseIdentifiers SQLGetInfo fInfoType = SQL_IDENTIFIER_CASE, the result must
be SQL_IC_UPPER

storesLowerCaseIdentifiers SQLGetInfo fInfoType = SQL_IDENTIFIER_CASE; the result must
be SQL_IC_LOWER

storesMixedCaseIdentifiers SQLGetInfo fInfoType = SQL_IDENTIFIER_CASE; the result must
be SQL_IC_MIXED

supportsMixedCaseQuoted
Identifiers

SQLGetInfo fInfoType = SQL_QUOTED_IDENTIFIER_CASE; the
result must be SQL_IC_UPPER, SQL_IC_LOWER, or
SQL_IC_MIXED

storesUpperCaseQuoted
Identifiers

SQLGetInfo fInfoType = SQL_QUOTED_IDENTIFIER_CASE; the
result must be SQL_IC_UPPER

storesLowerCaseQuoted
Identifiers

SQLGetInfo fInfoType = SQL_QUOTED_IDENTIFIER_CASE; the
result must be SQL_IC_LOWER

storesMixedCaseQuoted
Identifiers

SQLGetInfo fInfoType = SQL_QUOTED_IDENTIFIER_CASE; the
result must be SQL_IC_MIXED

getIdentifierQuoteString SQLGetInfo fInfoType = SQL_IDENTIFIER_QUOTE_CHAR

getSQLKeywords SQLGetInfo fInfoType = SQL_KEYWORDS

getNumericFunctions SQLGetInfo fInfoType = SQL_NUMERIC_FUNCTIONS; the result
is a bitmask enumerating the scalar numeric functions;
this bitmask is used to create a comma-separated list of
functions

getStringFunctions SQLGetInfo fInfoType = SQL_STRING_FUNCTIONS; the result is a
bitmask enumerating the scalar string functions; this
bitmask is used to create a comma-separated list of
functions

getSystemFunctions SQLGetInfo fInfoType = SQL_SYSTEM_
FUNCTIONS; the result is a bitmask enumerating the
scalar system functions; this bitmask is used to create a
comma-separated list of functions

getTimeDateFunctions SQLGetInfo fInfoType = SQL_TIMEDATE_
FUNCTIONS; the result is a bitmask enumerating the
scalar date and time functions; This bitmask is used to
create a comma-separated list of functions

getSearchStringEscape SQLGetInfo fInfoType = SQL_SEARCH_PATTERN_
ESCAPE

getExtraNameCharacters SQLGetInfo fInfoType = SQL_SPECIAL_
CHARACTERS

supportsAlterTableWithAdd
Column

SQLGetInfo fInfoType = SQL_ALTER_TABLE; result must have the
SQL_AT_ADD_COLUMN bit set

supportsAlterTableWithDrop
Column

SQLGetInfo fInfoType =SQL_ALTER_TABLE; the result must have
the SQL_AT_DROP_
COLUMN bit set

supportsColumnAliasing SQLGetInfo fInfoType = SQL_COLUMN_ALIAS

nullPlusNonNullIsNull SQLGetInfo fInfoType = SQL_CONCAT_NULL_BEHAVIOR; the
result must be SQL_CB_NULL

supportsConvert SQLGetInfo fInfoType = SQL_CONVERT_
FUNCTIONS; the result must be
SQL_FN_CVT_CONVERT

supportsTableCorrelation
Names

SQLGetInfo fInfoType = SQL_CORRELATION_
NAME; the result must be SQL_CN_
DIFFERENT or SQL_CN_ANY

supportsDifferentTable
CorrelationNames

SQLGetInfo fInfoType = SQL_CORRELATION_
NAMES; the result must be SQL_CN_
DIFFERENT

supportsExpressionsIn
OrderBy

SQLGetInfo fInfoType = SQL_EXPRESSIONS_
IN_ORDER_BY

supportsOrderByUnrelated SQLGetInfo fInfoType = SQL_ORDER_BY_
COLUMNS_IN_SELECT

supportsGroupBy SQLGetInfo fInfoType = SQL_GROUP_BY; the result must not be
SQL_GB_NOT_
SUPPORTED

supportsGroupByUnrelated SQLGetInfo fInfoType = SQL_GROUP_BY; the result must be
SQL_GB_NO_
RELATION

supportsGroupByBeyond
Select

SQLGetInfo fInfoType = SQL_GROUP_BY; the result must be
SQL_GB_GROUP_BY_
CONTAINS_SELECT

supportsLikeEscapeClause SQLGetInfo fInfoType = SQL_LIKE_ESCAPE_
CLAUSE

supportsMultipleResultSets SQLGetInfo fInfoType = SQL_MULT_RESULT_
SETS

supportsMultipleTransactions SQLGetInfo fInfoType = SQL_MULTIPLE_
ACTIVE_TXN

supportsNonNullableColumns SQLGetInfo fInfoType = SQL_NON_
NULLABLE_COLUMNS; the result must be
SQL_NNC_NON_
NULL

supportsMinimumSQL
Grammar

SQLGetInfo fInfoType = SQL_ODBC_SQL_
CONFORMANCE; result must be
SQL_OSC_MINIMUM, SQL_OSC_CORE, or
SQL_OSC_EXTENDED

supportsCoreSQLGrammar SQLGetInfo fInfoType = SQL_ODBC_
SQL_CONFORMANCE; the result must be
SQL_OSC_CORE or SQL_OSC_EXTENDED

supportsExtendedSQL
Grammar

SQLGetInfo fInfoType = SQL_ODBC_
SQL_CONFORMANCE; the result must be SQL_OSC_
EXTENDED

supportsIntegrityEnhancement
Facility

SQLGetInfo fInfoType = SQL_ODBC_SQL_
OPT_IEF

supportsOuterJoins SQLGetInfo fInfoType = SQL_OUTER_JOINS; the result must not be
“N”

supportsFullOuterJoins SQLGetInfo fInfoType = SQL_OUTER_JOINS; the result must be
“F”

supportsLimitedOuterJoins SQLGetInfo fInfoType = SQL_OUTER_JOINS; the result must be
“P”

getSchemaTerm SQLGetInfo fInfoType = SQL_OWNER_TERM

getProcedureTerm SQLGetInfo fInfoType = SQL_PROCEDURE_TERM

getCatalogTerm SQLGetInfo fInfoType = SQL_QUALIFIER_TERM

isCatalogAtStart SQLGetInfo fInfoType = SQL_QUALIFIER_
LOCATION; the result must be SQL_QL_START

getCatalogSeparator SQLGetInfo fInfoType = SQL_QUALIFIER_NAME_
SEPARATOR

supportsSchemasInData
Manipulation

SQLGetInfo fInfoType = SQL_OWNER_USAGE; the result must
have the SQL_OU_DML_
STATEMENTS bit set

supportsSchemasInProcedure
Calls

SQLGetInfo fInfoType = SQL_OWNER_USAGE; the result must
have the SQL_OU_
PROCEDURE_INVOCATION bit set

supportsSchemasInTable
Definitions

SQLGetInfo fInfoType = SQL_OWNER_USAGE; the result must
have the SQL_OU_TABLE_
DEFINITION bit set

supportsSchemasInIndex
Definitions

SQLGetInfo fInfoType = SQL_OWNER_USAGE; the result must
have the SQL_OU_INDEX_
DEFINITION bit set

supportsSchemasInPrivilege
Definitions

SQLGetInfo fInfoType = SQL_OWNER_USAGE; the result must
have the SQL_OU_
PRIVILEGE_DEFINITION bit set

supportsCatalogsInData
Manipulation

SQLGetInfo fInfoType = SQL_QUALIFIER_USAGE; the result must
have the SQL_QU_DML_STATEMENTS bit set

supportsCatalogsInProcedure
Calls

SQLGetInfo fInfoType = SQL_QUALIFIER_USAGE; the result must
have the SQL_QU_
PROCEDURE_INVOCATION bit set

supportsCatalogsInTable
Definitions

SQLGetInfo fInfoType = SQL_QUALIFIER_
USAGE; the result must have the
SQL_QU_TABLE_DEFINITION bit set

supportsCatalogsInIndex
Definitions

SQLGetInfo fInfoType = SQL_QUALIFIER_USAGE; the result must
have the SQL_QU_INDEX_DEFINITION bit set

supportsCatalogsInPrivilege
Definitions

SQLGetInfo fInfoType = SQL_QUALIFIER_USAGE; the result must
have the SQL_QU_
PRIVILEGE_DEFINITION bit set

supportsPositionedDelete SQLGetInfo fInfoType = SQL_POSITIONED_
STATEMENTS; the result must have the
SQL_PS_POSITIONED_DELETE bit set

supportsPositionedUpdate SQLGetInfo fInfoType = SQL_POSITIONED_
STATEMENTS; the result must have the
SQL_PS_POSITIONED_UPDATE bit set

supportsSelectForUpdate SQLGetInfo fInfoType = SQL_POSITIONED_
STATEMENTS; the result must have the
SQL_PS_SELECT_FOR_UPDATE bit set

supportsStoredProcedures SQLGetInfo fInfoType = SQL_PROCEDURES

supportsSubqueriesIn
Comparisons

SQLGetInfo fInfoType = SQL_SUBQUERIES; the result must have
the SQL_SQ_
COMPARISON bit set

supportsSubqueriesInExists SQLGetInfo fInfoType = SQL_SUBQUERIES; the result must have
the SQL_SQ_EXISTS bit set

supportsSubqueriesInIns SQLGetInfo fInfoType = SQL_SUBQUERIES; the result must have
the SQL_SQ_IN bit set

supportsSubqueriesIn
Quantifieds

SQLGetInfo fInfoType = SQL_SUBQUERIES; the result must have
the SQL_SQ_
QUANTIFIED bit set

supportsCorrelatedSubqueries SQLGetInfo fInfoType = SQL_SUBQUERIES; the result must have
the SQL_SQ_
CORRELATED_SUBQUERIES bit set

supportsUnion SQLGetInfo fInfoType = SQL_UNION; the result must have the
SQL_U_UNION bit set

supportsUnionAll SQLGetInfo fInfoType = SQL_UNION; the result must have the
SQL_U_UNION_ALL bit set

supportsOpenCursors
Across Commit

SQLGetInfo fInfoType = SQL_CURSOR_COMMIT_
BEHAVIOR; the result must be SQL_CB_PRESERVE

supportsOpenCursors
Across Rollback

SQLGetInfo fInfoType = SQL_CURSOR_
ROLLBACK_BEHAVIOR; the result must be
SQL_CB_PRESERVE

supportsOpenStatements
Across Commit

SQLGetInfo fInfoType = SQL_CURSOR_
COMMIT_BEHAVIOR; the result must be
SQL_CB_PRESERVE or SQL_CB_CLOSE

supportsOpenStatements
Across Rollback

SQLGetInfo fInfoType = SQL_CURSOR_
ROLLBACK_BEHAVIOR; the result must be
SQL_CB_PRESERVE or SQL_CB_CLOSE

getMaxBinaryLiteralLength SQLGetInfo fInfoType = SQL_MAX_BINARY_
LITERAL_LEN

getMaxCharLiteralLength SQLGetInfo fInfoType = SQL_MAX_CHAR_
LITERAL_LEN

getMaxColumnNameLength SQLGetInfo fInfoType = SQL_MAX_COLUMN_
NAME_LEN

getMaxColumnsInGroupBy SQLGetInfo fInfoType = SQL_MAX_COLUMNS_
IN_GROUP_BY

getMaxColumnsInIndex SQLGetInfo fInfoType = SQL_MAX_COLUMNS_
IN_INDEX

getMaxColumnsInOrderBy SQLGetInfo fInfoType = SQL_MAX_COLUMNS_
IN_ORDER_BY

getMaxColumnsInSelect SQLGetInfo fInfoType = SQL_MAX_COLUMNS_
IN_SELECT

getMaxColumnsInTable SQLGetInfo fInfoType = SQL_MAX_COLUMNS_
IN_TABLE

getMaxConnections SQLGetInfo fInfoType = SQL_ACTIVE_
CONNECTIONS

getMaxCursorNameLength SQLGetInfo fInfoType = SQL_MAX_CURSOR_
NAME_LEN

getMaxIndexLength SQLGetInfo fInfoType = SQL_MAX_INDEX_SIZE

getMaxSchemaNameLength SQLGetInfo fInfoType = SQL_MAX_OWNER_
NAME_LEN

getMaxProcedureNameLength SQLGetInfo fInfoType = SQL_MAX_
PROCEDURE_NAME_LEN

getMaxCatalogNameLength SQLGetInfo fInfoType = SQL_MAX_
QUALIFIER_NAME_LEN

getMaxRowSize SQLGetInfo fInfoType = SQL_MAX_ROW_SIZE

doesMaxRowSizeIncludeBlobs SQLGetInfo fInfoType = SQL_MAX_ROW_SIZE_
INCLUDES_LONG

getMaxStatementLength SQLGetInfo fInfoType = SQL_MAX_
STATEMENT_LEN

getMaxStatements SQLGetInfo fInfoType = SQL_ACTIVE_
STATEMENTS

getMaxTableNameLength SQLGetInfo fInfoType = SQL_MAX_TABLE_
NAME_LEN

getMaxTablesInSelect SQLGetInfo fInfoType = SQL_MAX_TABLES_
IN_SELECT

getMaxUserNameLength SQLGetInfo fInfoType = SQL_MAX_USER_
NAME_LEN

getDefaultTransactionIsolation SQLGetInfo fInfoType = SQL_DEFAULT_TXN_
ISOLATION

supportsTransactions SQLGetInfo fInfoType = SQL_TXN_CAPABLE; the result must not
be SQL_TC_NONE

supportsTransactionIsolation
Level

SQLGetInfo fInfoType = SQL_TXN_ISOLATION_
OPTION

supportsDataDefinitionAnd
DataManipulationTransactions

SQLGetInfo fInfoType = SQL_TXN_CAPABLE; the result must have
the SQL_TC_ALL bit set

supportsDataManipulation
TransactionsOnly

SQLGetInfo fInfoType = SQL_TXN_CAPABLE; the result must have
the SQL_TC_DML bit set

dataDefinitionCauses
Transaction Commit

SQLGetInfo fInfoType = SQL_TXN_CAPABLE; the result must have
the SQL_TC_DDL_COMMIT bit set

dataDefinition
IgnoredIn Transactions

SQLGetInfo fInfoType = SQL_TXN_CAPABLE; the result must have
the SQL_TC_DDL_IGNORE bit set

getProcedures SQL
Procedures

Returns a list of procedure names

getProcedureColumns SQLProcedure
Columns

Returns a list of input and output parameters used for
procedures

getTables SQLTables Returns a list of tables

getSchemas SQLTables Catalog = “”, Schema = “%”, Table = “”, TableType =
NULL; only the TABLE_SCHEM column is returned

getCatalogs SQLTables Catalog = “%”, Schema = “”, Table = “”, TableType =
NULL; only the TABLE_CAT column is returned

getTableTypes SQLTables Catalog = “”, Schema = “”, Table = “”, TableType = “%”

getColumns SQLColumns Returns a list of column names in specified tables

getColumnPrivileges SQLColumn
Privileges

Returns a list of columns and associated privileges for the
specified table

getTablePrivileges
SQLTable Privileges

Returns a list of tables and the privileges associated with
each table

getBestRowIdentifier SQLSpecial Columns fColType = SQL_BEST_ROWID

getVersionColumns SQLSpecial Columns fColType = SQL_ROWVER

getPrimaryKeys SQLPrimary
Keys

Returns a list of column names that comprise the primary
key for a table

getImportedKeys SQLForeign
Keys

PKTableCatalog = NULL, PKTableSchema = NULL,
PKTableName = NULL

getExportedKeys SQLForeign
Keys

FKTableCatalog = NULL, FKTableSchema = NULL,
FKTableName = NULL

getCrossReference SQLForeign
Keys

Returns a list of foreign keys in the specified table

getTypeInfo
SQLGetType
Info

fSqlType = SQL_ALL_TYPES

getIndexInfo SQLStatistics Returns a list of statistics about the specified table and the
indexes associated with the table

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Table 5.4Statement ODBC calls.

JDBC Interface Method ODBC Call Comments

close SQLFreeStmt fOption = SQL_CLOSE

getMaxFieldSize SQLGetStmtOption fOption = SQL_MAX_LENGTH

setMaxFieldSize SQLSetStmtOption fOption = SQL_MAX_LENGTH

getMaxRows SQLGetStmtOption fOption = SQL_MAX_ROWS

setMaxRows SQLSetStmtOption fOption = SQL_MAX_ROWS

setEscapeProcessing SQLSetStmtOption fOption = SQL_NOSCAN

getQueryTimeout SQLGetStmtOption fOption = SQL_QUERY_TIMEOUT

setQueryTimeout SQLSetStmtOption fOption = SQL_QUERY_TIMEOUT

cancel SQLCancel Cancels the processing on a statement

setCursorName SQLSetCursorName Associates a cursor name with a statement

execute SQLExecDirect The Bridge checks for a SQL statement
containing a ‘FOR UPDATE’ clause; if present,
the cursor concurrency level for the statement is
changed to SQL_CONCUR_LOCK

getUpdateCount SQLRowCount Returns the number of rows affected by an
UPDATE, INSERT, or DELETE statement

getMoreResults SQLMoreResults Determines whether there are more results
available on a statement and, if so, initializes
processing for those results

Table 5.5PreparedStatement ODBC calls.

JDBC Interface Method ODBC Call Comments

setNull SQLBindParameter fParamType = SQL_PARAM_INPUT; fSqlType =
sqlType passed as parameter

setBoolean

setByte

setShort

setInt

setLong

setFloat

setDouble

setNumeric

setString

setBytes

setDate

setTime

setTimestamp SQLBindParameter fParamType = SQL_PARAM_INPUT; fSqlType is
derived by the type of get method

setAsciiStream

setUnicodeStream

setBinaryStream SQLBindParameter fParamType = SQL_PARAM_INPUT, pcbValue =
SQL_DATA_AT_EXEC

execute SQLExecute May return SQL_NEED_DATA (because of
setAsciiStream, setUnicodeStream, or setBinary
Stream); in this case, the Bridge will call
SQLParamData and SQLPutData until no more data
is needed

Table 5.6CallableStatement ODBC calls.

JDBC Interface Method ODBC Call Comments

registerOutParameter SQLBindParameter fParamType = SQL_PARAM_OUTPUT;
rgbValue is a buffer that has been allocated in
Java; when using the getXXX methods, this
buffer is used to retrieve the data

Table 5.7ResultSet ODBC calls.

JDBC Interface Method ODBC Call Comments

next SQLFetch Fetches a row of data from a ResultSet

close SqlFreeStmt fOption = SQL_CLOSE

getString

getBoolean

getByte

getShort

getInt

getLong

getFloat

getDouble

getNumeric

getBytes

getTime

getTimestamp SQLGetData fCType is derived by the type of get method

getAsciiStream

getUnicodeStream

getBinaryStream SQLGetData An InputStream object is created to provide a
wrapper around the SQLGetData call; data is
read from the data source as needed

getCursorName SQLGetCursorName Returns the cursor name associated with the
statement

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Table 5.8ResultSetMetaData ODBC calls.

JDBC Interface Method ODBC Call Comments

getColumnCount SQLNumResultCols Returns the number of columns in a
ResultSet

isAutoIncrement SQLColAttributes fDescType =
SQL_COLUMN_AUTO_INCREMENT

isCaseSensitive SQLColAttributes fDescType =
SQL_COLUMN_CASE_SENSITIVE

isSearchable SQLColAttributes fDescType =
SQL_COLUMN_SEARCHABLE

isCurrency SQLColAttributes fDescType = SQL_COLUMN_MONEY

isNullable SQLColAttributes fDescType =
SQL_COLUMN_NULLABLE

isSigned SQLColAttributes fDescType =
SQL_COLUMN_UNSIGNED

getColumnDisplaySize SQLColAttributes fDescType =
SQL_COLUMN_DISPLAY_SIZE

getColumnLabel SQLColAttributes fDescType = SQL_COLUMN_LABEL

getColumnName SQLColAttributes fDescType = SQL_COLUMN_NAME

getSchemaName SQLColAttributes fDescType =
SQL_COLUMN_OWNER_NAME

getPrecision SQLColAttributes fDescType =
SQL_COLUMN_PRECISION

getScale SQLColAttributes fDescType = SQL_COLUMN_SCALE

getTableName SQLColAttributes fDescType =
SQL_COLUMN_TABLE_NAME

getCatalogName SQLColAttributes fDescType =
SQL_COLUMN_QUALIFIER_NAME

getColumnType SQLColAttributes fDescType = SQL_COLUMN_TYPE; the
SQL type must be converted to the
appropriate JDBC type

getColumnTypeName SQLColAttributes fDescType =
SQL_COLUMN_TYPE_NAME

isReadOnly SQLColAttributes fDescType =
SQL_COLUMN_UPDATABLE; the
value returned must be
SQL_ATTR_READONLY

isWritable SQLColAttributes fDescType =
SQL_COLUMN_UPDATABLE; the
value returned must be
SQL_ATTR_READWRITE_UNKNOWN

isDefinitelyWritable SQLColAttributes fDescType =
SQL_COLUMN_UPDATABLE; the
value returned must be
SQL_ATTR_WRITE

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 6
SQL Data Types In Java And ORM

Many of the standard SQL-92 data types, such as Date, do not have a native Java equivalent. To overcome this
deficiency, you must map SQL data types into Java. This process involves using JDBC classes to access SQL data types.
In this chapter, we’ll take a look at the classes in the JDBC that are used to access SQL data types. In addition, we’ll
briefly discuss the Object Relation Model (ORM), an interesting area in database development that attempts to map
relational models into objects.

You need to know how to properly retrieve equivalent Java data types—like int, long, and String—from their SQL
counterparts and store them in your database. This can be especially important if you are working with numeric data
(which requires careful handling of decimal precision) and SQL timestamps (which have a well-defined format). The
mechanism for handling raw binary data is touched on in this chapter, but it is covered in more detail in Chapter 8.

Mapping SQL Data To Java

Mapping Java data types into SQL is really quite simple. Table 6.1 shows how Java data types map into equivalent SQL
data types. Note that the types beginning with java.sql. are not elemental data types, but are classes that have methods
for translating the data into usable formats.

Table 6.1Java data type mapping into SQL data types.

Java Type SQL Type

string VARCHAR or LONGVARCHAR

java.sql.Numeric NUMERIC

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

byte[] VARBINARY or LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

The byte[] data type is a byte array of variable size. This data structure is used to store binary data; binary data is
manifest in SQL as VARBINARY and LONGVARBINARY. These types are used to store images, raw document files,
and so on. To store or retrieve this data from the database, you would use the stream methods available in the JDBC:
setBinaryStream and getBinaryStream. In Chapter 8, we’ll use these methods to build a multimedia Java/JDBC
application.

Table 6.2 shows the mapping of SQL data types into Java. You will find that both tables will come in handy when you’re
attempting to decide which types need special treatment. You can also use the tables as a quick reference to make sure
that you’re properly casting data that you want to store or retrieve.

Table 6.2SQL data type mapping into Java and JDBC.

Java Type SQL Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.sql.Nueric

DECIMAL java.sql.Numeric

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE souble

BINARY byte[]

VARBINARY byte[]

LONGBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

Now that you’ve seen how these data types translate from Java to SQL and vice versa, let’s look at some of the methods
that you’ll use to retrieve data from a database. These methods, shown in Table 6.3, are contained in the ResultSet class,
which is the class that is passed back when you invoke a Statement.executeQuery function. You’ll find a complete
reference of the ResultSet class methods in Chapter 12.

The parameters int and String allow you to specify the column you want by column number or column name.

Table 6.3A few ResultSet methods for getting data.

Method Description

getAsciiStream(String), getAsciiStream(int) Retrieves a column value as a stream of ASCII characters
and then reads in chunks from the stream

getBinaryStream(int), getBinaryStream(String) Retrieves a column value as a stream of uninterpreted
bytes and then reads in chunks from the stream

getBoolean(int), getBoolean(String) Returns the value of a column in the current row as a Java
boolean

getDate(int), getDate(String) Returns the value of a column in the current row as a java.
sql.Date object

getObject(int), getObject(String) Returns the value of a column as a Java object

ResultSetMetaData

One of the most useful classes you can use to retrieve data from a ResultSet is the ResultSetMetaData class. This class
contains methods that allow you to obtain vital information about the query’s result. After a query has been executed,
you can call the ResultSet.getMetaData method to fetch a ResultSetMetaData object for the resulting data. Table 6.4
shows some of the methods that you will most likely use. Again, more ResultSetMetaData methods are listed in
Chapter 12.

Table 6.4Handy methods in the ResultSetMetaData class.

Method Description

getColumnCount() Indicates the number of columns in the ResultSet

getColumnLabel(int) Returns the database-assigned Label for the column at position int in
the ResultSet

getColumnName(int) Returns the column’s name (for query reference)

getColumnType(int) Returns the specified column’s SQL type

isNullable(int) Tells you if the specified column can contain NULLs

isSearchable(int) Indicates whether the specified column is searchable via a WHERE
clause

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Understanding The Object Relation Model

The Object Relation Model (ORM) attempts to fuse object-orientation with the relational database model. Because many
of today’s programming languages, such as Java, are object-oriented, a tighter integration between the two would
provide easier abstraction for developers who program in object-oriented languages and also are required to “program”
in SQL. Such an integration would also relieve the necessity of constant translation between database tables and object-
oriented data structures, which can be an arduous task.

Mapping A Table Into A Java Object

Let’s look at a simple example to demonstrate the basics of ORM. Suppose we create the following table in a database:

First_Name Last_Name Phone_Number Employee_Number

Pratik Patel 800-555-1212 30122

Karl Moss 800-555-1213 30124

Keith Weiskamp 800-555-1214 09249

Ron Pronk 800-555-1215 10464

You can easily map this table into a Java object. Here’s the Java code you would write to encapsulate the data contained
in the table:

class Employee {
int Key;
String First_Name;
String Last_Name;
String Phone_Number;
int Employee_Number;
Key=Employee_Number;
}

To retrieve this table from the database into Java, we simply assign the respective columns to the Employee object we
created previously for each row we retrieve, as shown here:

Employee emp_object = new Employee();
emp_object.First_Name= resultset.getString("First_Name");
emp_object.Last_Name= resultset.getString("Last_Name");
emp_object.Phone_Number=resultset.getString("Phone_Number");
emp_object.Employee_Number=resultset.getInt("Employee_Number");

With a larger database model (with links between tables), a number of problems can arise, including scalability due to
multiple JOINs in the data model and cross-linking of table keys. Fortunately, a number of products are already available

that allow you to create these kinds of object-oriented/relational bridges. Moreover, there are several solutions being
developed to work specifically with Java.

I’ve given you an idea of what ORM is all about. If you would like to investigate this topic further, check out The
Coriolis Group Web site (http://www.coriolis.com/jdbc-book) for links to ORM vendors and some really informative
ORM documents. The ODMG (Object Database Management Group) is a consortium that is working on a revised
standard for object database technology and the incorporation of this concept into programming languages such as Java.
A link to the consortium’s Web site can be found on The Coriolis Group Web site as well.

Summary

As you can see from this brief chapter, mapping SQL data types to Java is truly a snap. We covered a few of the more
important methods you will use to retrieve data from a database. For a complete reference, see Chapter 12 and have a
look at the Date, Time, TimeStamp, Types, and Numeric classes.

The next chapter steps back from the JDBC to look at ways of presenting your data in Java. Using Java packages
available on the Net, we’ll cover graphs, tables, and more. We’ll also discuss some nifty methods in the JDBC that will
help streamline your code for retrieving data from your database.

Previous Table of Contents Next

http://www.coriolis.com/jdbc-book/

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 7
Working With Query Results

So far, we’ve been concentrating on how to use the classes in the JDBC to perform SQL queries. That’s great, but now
we have to do something with the data we’ve retrieved. The end user of your JDBC applets or applications will want to
see more than just rows and rows of data. In this chapter, we’ll learn how to package the raw table data that is returned
after a successful SQL query into a Java object, and then how to use this packaged data to produce easy-to-read graphs.

The first issue we’ll look at is creating a Java object to store the results of a query. This object will provide a usable
interface to the actual query results so they can be plugged into a Java graphics library. We’ll create a simple data
structure to hold the column results in a formatted way so that we can easily parse them and prepare them for display.
Second, we’ll look at taking these results in the Java object and setting up the necessary code to plug the data into a pie
chart and bar graph Java package.

In the next chapter, we’ll go one step further and work with BLOB data types (like images). Between these chapters, I
will be providing plenty of examples, complete with code, to help you work up your own JDBC programs. At the very
least, these chapters will give you some ideas for dealing with raw table data and displaying it in an effective manner.

A Basic Java Object For Storing Results

Although the JDBC provides you with the ResultSet class to get the data from an SQL query, you will still need to store
and format within your program the results for display. The smart way to do this is in a re-usable fashion (by
implementing a generic object or class) which allows you to re-use the same class you develop to retrieve data from a
query in any of your JDBC programs. The code snippet in Listing 7.1 is a method that will keep your results in a Java
object until you are ready to parse and display it.

Let’s begin by defining the data we will be getting from the source, and determining how we want to structure it within
our Java applet. Remember that the ResultSet allows us to retrieve data in a row-by-row, column-by-column fashion; it
simply gives us sequential access to the resulting table data. Table 7.1 shows the example table we will be using in this
chapter.

Table 7.1Example table.

emp_no first_name last_name salary

01234 Pratik Patel 8000

1235 Karl Moss 23000

0002 Keith Weiskamp 90000

0045 Ron Pronk 59999

0067 David Friedel 53000

The optimal way to store this data in our Java program is to put each column’s data in its own structure and then link the
different columns by using an index; this will allow us to keep the columnar relationship of the table intact. We will put
each column’s data in an array. To simplify matters, we’ll use the getString method, which translates the different data
types returned by a query into a String type. Then, we’ll take the data in a column and delimit the instances with
commas. We’ll use an array of String to do this; each place in the array will represent a different column. The data object
we will create is shown here:

table_data[0] => 01234,1235,0002,0045,0067
table_data[1] => Pratik,Karl,Keith,Ron,David
table_data[2] => Patel,Moss,Weiskamp,Pronk,Friedel
table_data[3] => 8000,23000,90000,59999,53000

Listing 7.1 shows the method we’ll use to query the database and return a String array that contains the resulting table
data.

Listing 7.1 The getData method.

public String[] getData(String QueryLine) {
// Run the QueryLine SQL query, and return the resulting columns in an
// array of String. The first column is at index [0], the second at [1], // etc.

 int columns, pos;
 String column[]=new String[4];
// We have to initialize the column String variable even though we re-
// declare it below. The reason is because the declaration below is in a
// try{} statement, and the compiler will complain that the variable may
// not be initialized.

 boolean more;

 try {

 Statement stmt = con.createStatement();
 // Create a Statement object from the
 // Connection.createStatement method.

 ResultSet rs = stmt.executeQuery(QueryLine);
 // Execute the passed in query, and get
 // the ResultSet for the query.

 columns=(rs.getMetaData()).getColumnCount();
 // Get the number of columns in the resulting table so we can
 // declare the column String array, and so we can loop
 // through the results and retrieve them.

 column = new String[columns];
 // Create the column variable to be the exact number of
 // columns that are in the result table.
 // Initialize the column array to be blank since we'll be adding
 // directly to them later.

for(pos=1; pos<=columns; pos++) {
 column[pos-1]="";
 }

 more=rs.next();
 // Get the first row of the ResultSet. Loop through the ResultSet

 // and get the data, row-by-row, column-by-column.
 while(more) {

 for (pos=1; pos<=columns; pos++) {
 column[pos-1]+=(rs.getString(pos));
 // Add each column to the respective column[] String array.
 }

 more=rs.next();
 // Get the next row of the result if it exists.

 // Now add a comma to each array element to delimit this row is
 // done.
 for (pos=1; pos<=columns; pos++) {
 if(more) {
 // We only want to do this if this isn't the last row of the
 // table!
 column[pos-1]+=(",");
 }
 }
 }
 stmt.close();
 // All done. Close the statement object.
 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }
return column;
// Finally, return the entire column[] array.
}

Showing The Results

Now that we have the data nicely packaged into our Java object, how do we show it? The code in Listing 7.2 dumps the
data in the object to the screen. We simply loop through the array and print the data.

Listing 7.2 Code to print retrieved data to the console.

public void ShowFormattedData(String[] columnD) {

int i;

for (i=0; i< columnD.length; i++) {
 System.out.println(columnD[i]+"\n");
 }
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Charting Your Data

Now that we’ve covered the preliminaries, we are ready to get to the fun stuff! Instead of creating a package that has
graphics utilities, we’re going to use the NetCharts library, which is stored on the accompanying CD-ROM. The package
on the CD is only an evaluation copy. Stop by http://www.netcharts.com to pick up the latest version (and some helpful
documentation). We’ll use the table in Table 7.1 and a bar chart to display the salary information for our fictional
company. Figure 7.1 shows the applet that is generated from the code in Listing 7.3. Remember, the code for this
example can be found on the accompanying CD-ROM, or at The Coriolis Group Web site at http://www.coriolis.com/
jdbc-book.

Figure 7.1 The bar chart applet.

Listing 7.3 Dynamically generating a bar chart from a database query—Part I.

/*
Example 7-1
*/
import java.awt.*;
import java.applet.Applet;
import java.sql.*;

public class example71 extends java.applet.Applet {
 String url;
 String Name;
 Connection con;
 TextArea OutputField = new TextArea(10,35);
 NFBarchartApp bar;
 // This is the bar chart class from the NetCharts package

public void init() {
 setLayout(new BorderLayout());
 url="jdbc:msql://elanor/jdbctest";
 // The URL for the database we wish to connect to

 ConnectToDB();
 // Connect to the database.

http://www.netcharts.com/
http://www.coriolis.com/jdbc-book/
http://www.coriolis.com/jdbc-book/
javascript:displayWindow('images/07-01.jpg',510,580)
javascript:displayWindow('images/07-01.jpg',510,580)

 add("North", OutputField);
 // Add the TextArea for showing the data to the user
 String columnData[] = getData("select * from Employee");
 // Run a query that goes and gets the complete table listing; we can put
 // any query here and would optimally want to get only the columns we
 // need.

 ShowFormattedData(columnData);
 // Show the data in the TextArea
 ShowChartData(columnData[3],columnData[2]);

// Now, pass the two data sets and create a bar chart
 add("Center", bar);
// And add the bar chart to the applet's panel
}

public void ShowFormattedData(String[] columnD) {

int i;

for (i=0; i< columnD.length; i++) {
 OutputField.appendText(columnD[i]+"\n");
}

}

public void ConnectToDB() {

 try {
 new imaginary.sql.iMsqlDriver();
 con = DriverManager.getConnection(url, "prpatel", "");
 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }

}

public void ShowChartData(String Data1, String Data2) {
try {
 bar = new NFBarchartApp(this);
 // Instantiate the bar chart class

 bar.init();
 bar.start();
 // Initialize it, and start it running.

 // Below is where we load the parameters for the chart.
 // See the documentation at the NetCharts Web site, or
 // the CD-ROM for details.

 bar.loadParams(
 "Header = ('Salary Information');"+
 "DataSets = ('Salary', red);"+
 "DataSet1 = "+ Data1 + ";"+

 "BarLabels = "+ Data2 + ";"+
 "GraphLayout= HORIZONTAL;"+
 "BottomAxis = (black, 'TimesRoman', 14, 0,
 0,100000)"
);

 bar.loadParams ("Update");
 // Tell the bar chart class we've put
 // some new parameters in.

 } catch (Exception e) {
 System.out.println (e.getMessage());
 }

} // More to come following some comments…

The bar chart class from the NetCharts package uses a method to load the values for the chart. We have to define the
labels and corresponding values, but this is generally straightforward. Because our data is formatted in a comma-
delimited fashion, we don’t have to parse the data again to prepare it for use. In the next example (the pie chart
example), we do have to parse it to put it in the proper format for the charting class to recognize it. Listing 7.4 picks up
the code where we left off in Listing 7.3.

Listing 7.4 Dynamically generating a bar chart from a database query—Part II.

public String[] getData(String QueryLine) {

 int columns, pos;
 String column[]=new String[4];
 boolean more;

 try {

 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(QueryLine);
 columns=(rs.getMetaData()).getColumnCount();
 column = new String[columns];

 // Initialize the columns to be blank
 for(pos=1; pos<=columns; pos++) {
 column[pos-1]="";
 }

 more=rs.next();

 while(more) {

 for (pos=1; pos<=columns; pos++) {
 column[pos-1]+=(rs.getString(pos));
 }

 more=rs.next();
 for (pos=1; pos<=columns; pos++) {
 if(more) {
 column[pos-1]+=(",");
 }
 }

 }
 stmt.close();

 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }

return column;
}

That’s it! We’ve successfully queried a database, formatted the resulting data, and created a bar chart to present a visual
representation of the results. Listing 7.5 shows the generation of a pie chart, and Figure 7.2 shows the pie chart applet.

Figure 7.2 The pie chart applet.

Previous Table of Contents Next

javascript:displayWindow('images/07-02.jpg',519,568)
javascript:displayWindow('images/07-02.jpg',519,568)

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Listing 7.5 Dynamically generating a pie chart from a database query.

/*
Example 7-2: Pie chart
*/
import java.awt.*;
import java.applet.Applet;
import java.sql.*;
import java.util.StringTokenizer;

public class example72 extends java.applet.Applet {
 String url;
 String Name;
 Connection con;
 TextArea OutputField = new TextArea(10,35);
 NFPiechartApp pie;

public void init() {
 setLayout(new BorderLayout());
 url="jdbc:msql://elanor/jdbctest";
 pie = new NFPiechartApp(this);

 ConnectToDB();

 add("North", OutputField);
 String columnData[] = getData("select * from Cost");

 ShowFormattedData(columnData);
 ShowChartData(columnData[1],columnData[0]);
 add("Center", pie);

}

public void ConnectToDB() {

 try {
 new imaginary.sql.iMsqlDriver();
 con = DriverManager.getConnection(url, "prpatel", "");
 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }

}

public void ShowFormattedData(String[] columnD) {

int i;

for (i=0; i< columnD.length; i++) {
 OutputField.appendText(columnD[i]+"\n");
 }

}

public void ShowChartData(String dataNumber, String dataLabel) {

StringTokenizer nData, lData;
String SliceData = "";
ColorGenerator colorGen = new ColorGenerator();

// We need to assign colors to the pie slices automatically, so we use a
// class that cycles through colors. See this class defined below.

nData = new StringTokenizer(dataNumber, ",");
lData = new StringTokenizer(dataLabel, ",");
// We used our preformatted column data, and need to break it down to the
// elements. We use the StringTokenizer to break the column string data
// individual down by commas we inserted when we created the data.

// We assume that dataNumber and dataLabel have the same number of
// elements since we just generated them from the getData method.

while(nData.hasMoreTokens()) {
// Loop through the dataNumber and dataLabel and build the slice data:
// (1234, darkBlue, "Label"). This is what the pie chart class expects,
// so we must parse our data and put it in this format.

SliceData += "("+nData.nextToken() + ", "
 + colorGen.next() + ", '"
 + lData.nextToken() + "', green)";

System.out.println(SliceData);
if (nData.hasMoreTokens()) {SliceData += ", ";}
}

try {
 // We already instantiated the pie chart
 // class(NFPieChartAPP) at the top of the applet.
 pie.init();
 pie.start();
 // Initialize and start the pie chart class.

 pie.loadParams(
 "Background=(black, RAISED, 4);"+
 "Header=('Cost Information (millions)');"+
 "LabelPos=0.7;"+
 "DwellLabel = ('', black, 'TimesRoman', 16);"+
 "Legend = ('Legend', black);"+
 "LegendBox = (white, RAISED, 4);"+
 "Slices=(12.3, blue, 'Marketing', cyan), (4.6,
 antiquewhite, 'Sales'), (40.1, aqua, 'Production'),
 (18.4, aquamarine, 'Support');");

 // Above, we set the parameters for the pie chart,
 // including the data and labels which we generated
 // in the loop above (SliceData), and the Legend,
 // label position, header, and other properties.
 // Again, have a look at the NetCharts documentation
 // for all of the possible parameters.

 pie.loadParams ("Update");
 // Tell the pie chart class we've sent it new
 // parameters to display.
 } catch (Exception e) {
 System.out.println (e.getMessage());
 }
}

// Below is the same as before except for the new ColorGenerator class
// that we needed to produce distinct colors.

public String[] getData(String QueryLine) {

 int columns, pos;
 String column[]=new String[4];
 boolean more;

 try {

 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(QueryLine);
 columns=(rs.getMetaData()).getColumnCount();

 column = new String[columns];

 // Initialize the columns to be blank
 for(pos=1; pos<=columns; pos++) {
 column[pos-1]="";
 }

 more=rs.next();

 while(more) {for (pos=1; pos<=columns; pos++) {
 column[pos-1]+=(rs.getString(pos));
 }

 more=rs.next();
 for (pos=1; pos<=columns; pos++) {
 if(more) {
 column[pos-1]+=(",");
 }
 }
 }
 stmt.close();
 // con.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }

return column;
}
public void destroy() {

 try {con.close();}
 catch(Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }
}
}

class ColorGenerator {
// This class is needed to produce colors that the pie chart can use to
// color the slices properly. They are taken from the NetCharts color
// class, NFColor.
public ColorGenerator() {

}

int color_count = -1;
// Keep a running count of the colors we have used. We'll simply index
// the colors in a String array, and call up the incremented counter to
// get a new color. If you need more colors than are added below, you can
// add more by pulling them from the NFColor class found in the NetCharts
// package on the CD-ROM or Web site.

String colors[] =
{"aliceblue","antiquewhite","aqua","aquamarine","azure","beige",
"bisque","black","blanchedalmond","blue","blueviolet","brown","chocolate",
"cadetblue","chartreuse","cornsilk","crimson","cyan"};

public String next() {

// Increment the color counter, and return a String which contains the
// color at this index.
 color_count += 1;
 return colors[color_count];

}

} // end example72.java

Summary

This chapter has shown you how to generate meaningful charts to represent data obtained from a query. We’ve seen how
to create both bar and pie charts. You can use the properties of the NetCharts package to customize your charts as you
wish, and there are many more options in the package that haven’t been shown in the examples here.

In the next chapter, we will continue to discuss working with database query results, and we will provide a complete
code example for showing SQL BLOB data types. It shows you how to get an image from the ResultSet, as well as how
to add images or binary data to a table in a database.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 8
The IconStore Multimedia JDBC Application

In the previous chapter, we learned how to process query results with JDBC. In this chapter, we’ll take these query
results and put them to use in a multimedia application. The application we’ll be developing, IconStore, will connect to a
database, query for image data stored in database tables, and display the images on a canvas. It’s all very simple, and it
puts the JDBC to good use by building a dynamic application totally driven by data stored in tables.

IconStore Requirements

The IconStore application will utilize two database tables: ICONCATEGORY and ICONSTORE. The
ICONCATEGORY table contains information about image categories, which can be items like printers, sports, and
tools. The ICONSTORE table contains information about each image. Tables 8.1 and 8.2 show the database tables’
underlying data structures.

Note that the CATEGORY column in the ICONSTORE is a foreign key into the ICONCATEGORY table. If the
category ID for sports is “1”, you can obtain a result set containing all of the sports images by using this statement:

SELECT ID, DESCRIPTION, ICON FROM ICONSTORE WHERE CATEGORY = 1

Table 8.1The ICONCATEGORY table.

Column Name SQL Type Description

CATEGORY INTEGER Category ID

DESCRIPTION VARCHAR Description of the image category

Table 8.2The ICONSTORE table.

Column Name SQL Type Description

ID INTEGER Image ID

DESCRIPTION VARCHAR Description of the image

CATEGORY INTEGER Category ID

ICON VARBINARY Binary image

Now, let’s take a look at what’s going on in the application:

• An Icons menu, which is dynamically created by the ICONCATEGORY table, contains each of the image
categories as an option. The user can select an image category from this menu to display the proper list of
image descriptions in a list box. The ICONSTORE table is used to dynamically build the list.

• The user can select an image description from the list box to display the corresponding image.
• Once an image has been displayed, the user can select the Save As menu option to save the image to disk.

As you can see, IconStore will not be too complicated, but it will serve as a very good foundation for developing
database-driven applications.

Building The Database

Now that we’ve established the application’s requirements, we need to build the underlying database. We’ll look at a
simple JDBC application to accomplish this, although it may be created by any number of methods. Listing 8.1 shows
the BuildDB.java source code. This application uses the SimpleText JDBC driver (covered in great detail in Chapter 10)
to create the ICONCATEGORY and ICONSTORE tables, but any JDBC driver can be used in its place.

Listing 8.1 Building the IconStore database.

import java.sql.*;
import java.io.*;

class BuildDB {
//————————————————————————————————————
// main
//————————————————————————————————————
public static void main(String args[]) {
 try {
 // Create an instance of the driver
 java.sql.Driver d = (java.sql.Driver) Class.forName (
 "jdbc.SimpleText.SimpleTextDriver").newInstance();

 // Properties for the driver
 java.util.Properties prop = new java.util.Properties();

 // URL to use to connect
 String url = "jdbc:SimpleText";

 // The only property supported by the SimpleText driver
 // is "Directory."
 prop.put("Directory", "/java/IconStore");

 // Connect to the SimpleText driver
 Connection con = DriverManager.getConnection(url, prop);

 // Create the category table
 buildCategory(con, "IconCategory");

 // Create the IconStore table
 buildIconStore(con, "IconStore");

 // Close the connection
 con.close();
 }
 catch (SQLException ex) {
 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());

 ex = ex.getNextException ();
 }
 System.out.println("");
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace ();
 }
}
//————————————————————————————————————
// BuildCategory
// Given a connection object and a table name, create the IconStore
// category database table.
//————————————————————————————————————
protected static void buildCategory(
 Connection con,
 String table)
 throws SQLException
{
 System.out.println("Creating " + table);
 Statement stmt = con.createStatement();
 // Create the SQL statement
 String sql = "create table " + table +
 " (CATEGORY NUMBER, DESCRIPTION VARCHAR)";

 // Create the table
 stmt.executeUpdate(sql);

 // Create some data using the statement
 stmt.executeUpdate("INSERT INTO " + table + " VALUES (1,
 'Printers')");
 stmt.executeUpdate("INSERT INTO " + table + " VALUES (2, 'Sports')");
 stmt.executeUpdate("INSERT INTO " + table + " VALUES (3, 'Tools')");
}
//————————————————————————————————————
// BuildIconStore
// Given a connection object and a table name, create the IconStore
// icon database table.
//————————————————————————————————————
protected static void buildIconStore(
 Connection con,
 String table)
 throws SQLException
{

 System.out.println("Creating " + table);

 Statement stmt = con.createStatement();

 // Create the SQL statement
 String sql = "create table " + table +
 " (ID NUMBER, DESCRIPTION VARCHAR, CATEGORY NUMBER, ICON
 BINARY)";

 // Create the table
 stmt.executeUpdate(sql);
 stmt.close();

 // Create some data using a prepared statement
 sql = "insert into " + table + " values(?,?,?,?)";

 FileInputStream file;
 PreparedStatement ps = con.prepareStatement(sql);

 int category;
 int id = 1;

 // Add the printer icons
 category = 1;

 addIconRecord(ps, id++, "Printer 1", category, "printers/print.gif");
 addIconRecord(ps, id++, "Printer 2", category, "printers/print0.gif");

 // Add the sports icons
 category = 2;

 addIconRecord(ps, id++, "Archery", category, "sports/
 sport_archery.gif");
 addIconRecord(ps, id++, "Baseball", category, "sports/
 sport_baseball.gif");

 // Add the tools
 category = 3;

 addIconRecord(ps, id++, "Toolbox 1", category, "tools/toolbox.gif");
 addIconRecord(ps, id++, "Toolbox 2", category, "tools/toolbox1.gif");
 ps.close();
}

//——————————————————————————————————
// AddIconRecord
// Helper method to add an IconStore record. A PreparedStatement is
// provided to which this method binds input parameters. Returns
// true if the record was added.
//——————————————————————————————————
protected static boolean addIconRecord(
 PreparedStatement ps,
 int id,
 String desc,
 int category,
 String filename)
 throws SQLException
{
 // Create a file object for the icon
 File file = new File(filename);
 if (!file.exists()) {
 return false;
 }

 // Get the length of the file. This will be used when binding
 // the InputStream to the PreparedStatement.
 int len = (int) file.length();

 FileInputStream inputStream;

 try {

 // Attempt to create an InputStream from the File object
 inputStream = new FileInputStream (filename);

 }
 catch (Exception ex) {

 // Some type of failure. Convert it into a SQLException.
 throw new SQLException (ex.getMessage ());
 }

 // Set the parameters
 ps.setInt(1, id);
 ps.setString(2, desc);
 ps.setInt(3,category);
 ps.setBinaryStream(4, inputStream, len);

 // Now execute
 int rows = ps.executeUpdate();
 return (rows == 0) ? false : true;
 }
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

The BuildDB application connects to the SimpleText JDBC driver, creates the ICONCATEGORY table, adds some
image category records, creates the ICONSTORE table, and adds some image records. Note that when the image records
are added to the ICONSTORE table, a PreparedStatement object is used. We’ll take a closer look at
PreparedStatements in Chapter 11; for now, just realize that this is an efficient way to execute the same SQL statement
multiple times with different parameters values. Also note that the image data is coming out of GIF files stored on disk.
An InputStream is created using these files, which is then passed to the JDBC driver for input. The JDBC driver reads
the InputStream and stores the binary data in the database table. Simple, isn’t it? Now that we’ve created the database,
we can start writing our IconStore application.

Application Essentials

The source code for the IconStore application is shown throughout the rest of this chapter, broken across the various
sections. As always, you can pick up a complete copy of the source code on the CD-ROM. Remember, you need to have
the SimpleText JDBC driver installed before using the IconStore application. See Chapter 3, if you have trouble getting
the application to run.

Writing The main Method

Every JDBC application must have an entry point, or a place at which to start execution. This entry point is the main
method, which is shown in Listing 8.2. For the IconStore application, main simply processes any command line
arguments, creates a new instance of the IconStore class (which extends Frame, a top-level window class), and sets up
the window attributes. The IconStore application accepts one command line argument: the location of the IconStore
database. The default location is /IconStore.

Listing 8.2 IconStore main method.

import java.awt.*;
import java.io.*;
import java.util.*;
import java.sql.*;

public class IconStore
 extends Frame
{
 IconCanvas imageCanvas;
 List iconList;
 Panel iconListPanel;
 MenuBar menuBar;
 Menu fileMenu;
 Menu sectionMenu;
 List lists[];

 static String myHome = "/IconStore";
 Connection connection;

 Hashtable categories;
 Hashtable iconDesc[];
 String currentList;
 String currentFile = null;
 FileDialog fileDialog;
 //————————————————————————————————————
 // main
 //————————————————————————————————————
 public static void main (String[] args) {

 // If an argument was given, assume it is the location of the
 // database.
 if (args.length > 0) {
 myHome = args[0].trim();

 // If there is a trailing separator, remove it
 if (myHome.endsWith("/") ||
 myHome.endsWith("\\")) {
 myHome = myHome.substring(0, myHome.length() - 1);
 }
 }

 // Create our IconStore object
 IconStore frame = new IconStore();

 // Setup and display
 frame.setTitle("The IconStore");
 frame.init();

 frame.pack();
 frame.resize(300, 400);
 frame.show();
 }

A lot of work is being performed in IconStore.init, such as establishing the database connection, reading the icon
categories, creating the menus, and reading the icon descriptions. We’ll take a look at each of these in greater detail in
the following sections.

Establishing The Database Connection

Listing 8.3 shows the code used by the IconStore application to connect to the SimpleText JDBC driver.

Listing 8.3 Establishing the database connection.

public Connection establishConnection()
 {

 Connection con = null;
 try {
 // Create an instance of the driver
 java.sql.Driver d = (java.sql.Driver) Class.forName (
 "jdbc.SimpleText.SimpleTextDriver").newInstance();

 // Properties for the driver
 java.util.Properties prop = new java.util.Properties();

 // URL to use to connect
 String url = "jdbc:SimpleText";

 // Set the location of the database tables
 prop.put("Directory", myHome);

 // Connect to the SimpleText driver
 con = DriverManager.getConnection(url, prop);
 }
 catch (SQLException ex) {

 // An SQLException was generated. Dump the exception
 // contents. Note that there may be multiple SQLExceptions
 // chainedtogether.

 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException();
 }
 System.exit(1);
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }
 return con;
}

Note that we need to set a property for the SimpleText driver to specify the location of the database tables. In reality, the
SimpleText driver stores each database table as a file, and the Directory property specifies the directory in which these
files are kept. As I mentioned in the previous section, the default location is /IconStore (the IconStore directory of your
current drive), but this can be overridden to be any location.

If successful, a JDBC Connection object is returned to the caller. If there is any reason a database connection cannot be
established, the pertinent information will be displayed and the application will be terminated.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Creating The Menu

One of the requirements for the IconStore application is the ability to dynamically build the Icons menu. To do this,
we’ll need to query the ICONCATEGORY table and build the menu from the results. First, we need to read the database
table and store the query results, as shown in Listing 8.4.

Listing 8.4 Reading the ICONCATEGORY table.

//————————————————————————————————————
// getCategories
// Read the IconStore CATEGORY table and create a Hashtable containing
// a list of all the categories. The key is the category description and
// the data value is the category ID.
//————————————————————————————————————
public Hashtable getCategories(
 Connection con)
{
 Hashtable table = new Hashtable();

 try {
 // Create a Statement object
 Statement stmt = con.createStatement();

 // Execute the query and process the results
 ResultSet rs = stmt.executeQuery(
 "SELECT DESCRIPTION,CATEGORY FROM ICONCATEGORY");

 // Loop while more rows exist
 while (rs.next()) {
 // Put the description and id in the Hashtable
 table.put(rs.getString(1), rs.getString(2));
 }
 // Close the statement
 stmt.close();
 }
 catch (SQLException ex) {

 // An SQLException was generated. Dump the exception contents.
 // Note that there may be multiple SQLExceptions chained
 // together.

 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());

 ex = ex.getNextException();
 }
 System.exit(1);
 }

 return table;
}

The flow of this routine is very basic, and we’ll be using it throughout our IconStore application. First, we create a
Statement object; then, we submit an SQL statement to query the database; next, we process each of the resulting rows;
and finally, we close the Statement. Note that a Hashtable object containing a list of all the categories is returned; the
category description is the key and the category ID is the element. In this way, we can easily cross-reference a category
description to an ID. We’ll see why this is necessary a bit later.

Now that all of the category information has been loaded, we can create our menu. Listing 8.5 shows how this is done.

Listing 8.5 Creating the Icons menu.

// Get a Hashtable containing an entry for each icon category.
// The key is the description and the data value is the
// category number.

categories = getCategories(connection);

// File menu
fileMenu = new Menu("File");
fileMenu.add(new MenuItem("Save As"));
fileMenu.add(new MenuItem("Exit"));
menuBar.add(fileMenu);

// Icons menu
sectionMenu = new Menu("Icons");

Enumeration e = categories.keys();
 int listNo = 0;
 String desc;

// Loop while there are more keys (category descriptions)
while (e.hasMoreElements()) {
 desc = (String) e.nextElement();

 // Add the description to the Icons menu
 sectionMenu.add(new MenuItem(desc));
}

// Add the Icons menu to the menu bar
menuBar.add(sectionMenu);

// Set the menu bar
setMenuBar(menuBar);

Notice that the Hashtable containing a list of the image categories is used to create our menu. The only way to examine
the contents of a Hashtable without knowing each of the keys is to create an Enumeration object, which can be used to
get the next key value of the Hashtable. Figure 8.1 shows our database-driven menu.

Figure 8.1 The IconStore menu.

Creating The Lists

Next on our agenda: creating the list boxes containing the image descriptions. We’ll create a list for each category, so
when the user selects a category from the Icons menu, only a list of the images for the selected category will be shown.
We’ll use a CardLayout to do this, which is a nifty way to set up any number of lists and switch between them
effortlessly. For each of the categories that we read from the ICONCATEGORY table, we also read each of the image
descriptions for that category from the ICONSTORE table and store those descriptions in a Hashtable for use later. At
the same time, we add each description to a list for the category. Listing 8.6 shows the code used to read the
ICONSTORE table.

Previous Table of Contents Next

javascript:displayWindow('images/08-01.jpg',300,400)
javascript:displayWindow('images/08-01.jpg',300,400)

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Listing 8.6 Reading the ICONSTORE table.

//————————————————————————————————————
// getIconDesc
// Read the IconStore ICONSTORE table and create a Hashtable
// a list of all the icons for the given category. The key is the
// icon containing description and the data value is the icon ID. The
// description is also added to the List object given.
//————————————————————————————————————
public Hashtable getIconDesc(
 Connection con,
 String category,
 List list)
{
 Hashtable table = new Hashtable();
 String desc;

 try {
 // Create a Statement object
 Statement stmt = con.createStatement();

 // Execute the query and process the results
 ResultSet rs = stmt.executeQuery(
 "SELECT DESCRIPTION,ID FROM ICONSTORE WHERE CATEGORY=" +

 category);

 // Loop while more rows exist
 while (rs.next()) {
 desc = rs.getString(1);

 // Put the description and ID in the Hashtable
 table.put(desc, rs.getString(2));

 // Put the description in the list
 list.addItem(desc);

 }
 // Close the statement
 stmt.close();

}
catch (SQLException ex) {

 // An SQLException was generated. Dump the exception contents.
 // Note that there may be multiple SQLExceptions chained
 // together.

 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException();
 }
 System.exit(1);
 }

 return table;
}

The process we used here is the same as we have seen before—creating a Statement, executing a query, processing the
results, and closing the Statement. Listing 8.7 shows the entire code for the IconStore.init method. In addition to
building the menu, we also build the CardLayout. It is important to note that the IconStore application is totally
database-driven; no code will have to be modified to add or remove categories or images.

Listing 8.7 IconStore init method.

//————————————————————————————————————
// init
// Initialize the IconStore object. This includes reading the
// IconStore database for the icon descriptions.
//————————————————————————————————————
public void init()
{
 // Create our canvas that will be used to display the icons
 imageCanvas = new IconCanvas();

 // Establish a connection to the JDBC driver
 connection = establishConnection();

 // Get a Hashtable containing an entry for each icon category.
 // The key is the description and the data value is the
 // category number.
 categories = getCategories(connection);

 // Setup the menu bar
 menuBar = new MenuBar();

 // File menu
 fileMenu = new Menu("File");
 fileMenu.add(new MenuItem("Save As"));
 fileMenu.add(new MenuItem("Exit"));
 menuBar.add(fileMenu);

 // Icons menu
 sectionMenu = new Menu("Icons");

 // Setup our category lists, list panel (using a CardLayout), and
 // icon menu.
 iconListPanel = new Panel();
 iconListPanel.setLayout(new CardLayout());

 lists = new List[categories.size()];
 iconDesc = new Hashtable[categories.size()];

 Enumeration e = categories.keys();
 int listNo = 0;
 String desc;

 // Loop while there are more keys (category descriptions)
 while (e.hasMoreElements()) {
 desc = (String) e.nextElement();

 // The first item in the list will be our default
 if (listNo == 0) {
 currentList = desc;
 }

 // Create a new list, with a display size of 20
 lists[listNo] = new List(20, false);

 // Create a new CardLayout panel
 iconListPanel.add(desc, lists[listNo]);

 // Add the description to the Icons menu
 sectionMenu.add(new MenuItem(desc));

 // Get a Hashtable containing an entry for each row found
 // for this category. The key is the icon description and
 // the data value is the ID.

 iconDesc[listNo] = getIconDesc(connection,
 (String) categories.get(desc), lists[listNo]);
 listNo++;
}
 // Add the Icons menu to the menu bar
 menuBar.add(sectionMenu);

 // Set the menu bar
 setMenuBar(menuBar);

 // Create a Save As file dialog box
 fileDialog = new FileDialog(this, "Save File", FileDialog.SAVE);

 // Setup our layout
 setLayout(new GridLayout(1,2));
 add(iconListPanel);
 add(imageCanvas);
}

It is very important to note how the CardLayout has been set up. Each of the lists is added to the CardLayout with a
description as a title, which, in our case, is the name of the category. When the user selects a category from the Icons
menu, we can use the category description to set the new CardLayout list. Figure 8.2 shows the initial screen after
loading the database tables.

Figure 8.2 The IconStore main screen.

Previous Table of Contents Next

javascript:displayWindow('images/08-02.jpg',300,400)
javascript:displayWindow('images/08-02.jpg',300,400)

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Handling Events

There are two types of events that we need to be aware of in the IconStore application: selecting menu options and
clicking on the image list to select an icon. As with the Interactive SQL applet we discussed in Chapter 4, the event
handling code is contained in the handleEvent method, as shown in Listing 8.8.

Listing 8.8 IconStore handleEvent.

//————————————————————————————————————
// handleEvent
// Handle an event by the user.
//————————————————————————————————————
public boolean handleEvent(
 Event evt)
{
 switch (evt.id) {
 case Event.ACTION_EVENT:

 // Determine the type of event that just occurred
 if (evt.target instanceof MenuItem) {

 // The user selected a menu item. Figure out what action
 // should be taken.
 String selection = (String) evt.arg;

 // 'Save As' - Save the currently displayed icon to a file
 if (selection.equals("Save As")) {
 if (currentFile != null) {
 fileDialog.setFile("");
 fileDialog.pack();
 fileDialog.show();

 String saveFile = fileDialog.getFile();

 if (saveFile == null) {
 return true;
 }

 // If this is a new file, it will end with .*.*
 if (saveFile.endsWith(".*.*")) {
 saveFile = saveFile.substring(0,
 saveFile.length() - 4);
 // If no extension is given, append .GIF
 if (saveFile.indexOf(".") < 0) {
 saveFile += ".gif";
 }

 }
 // Copy the file. Returns true if successful.
 boolean rc = copyFile (currentFile, saveFile);
 }
 return true;
 }
 // 'Exit' - Exit the application
 else if (selection.equals("Exit")) {
 // If there was an image file, delete it
 if (currentFile != null) {
 (new File(currentFile)).delete();
 }

 System.exit(0);
 }

 // The user must have selected a different set of icons;
 // Display the proper list.
 else {
 currentList = selection;
 ((CardLayout) iconListPanel.getLayout()).show(
 iconListPanel, currentList);

 // Display the icon, if one was previously selected
 displayIcon(connection);
 return true;
 }
 }
 break;

 case Event.LIST_SELECT:
 displayIcon(connection);
 break;
 }

 return false;
}

Most of the code is very straightforward. Of interest here is how the CardLayout is managed. When a user makes a
selection from the Icons menu, the selected item (which is the category description) is used to change the CardLayout.
Remember that when the CardLayout was created, the title of each list was the category description. Also note that
when the user selects an item from the list box (LIST_SELECT), the corresponding image can be displayed. Listing 8.9
shows how this is done.

When the user selects Exit from the menu, the temporary image file (which is discussed later) is deleted from disk, and
the application is terminated. This is the perfect time to close the Connection that was in use. I purposefully omitted this
step to illustrate a point: The JDBC specification states that all close operations are purely optional. It is up to the JDBC
driver to perform any necessary clean-up in the finalize methods for each object. I strongly recommend, though, that all
JDBC applications close objects when it is proper to do so.

Listing 8.9 Loading and displaying the selected image.

//————————————————————————————————————
// displayIcon
// Display the currently selected icon.
//————————————————————————————————————
public void displayIcon(

 Connection con)
{
 // Get the proper list element
 int n = getCategoryElement(currentList);

 // Get the item selected
 String item = lists[n].getSelectedItem();

 // Only continue if an item was selected
 if (item == null) {
 return;
 }

 // Get the ID
 String id = (String) iconDesc[n].get(item);

 try {
 // Create a Statement object
 Statement stmt = con.createStatement();

 // Execute the query and process the results
 ResultSet rs = stmt.executeQuery(
 "SELECT ICON FROM ICONSTORE WHERE ID=" + id);
 // If no rows are returned, the icon was not found
 if (!rs.next()) {
 stmt.close();
 return;
 }

 // Get the data as an InputStream
 InputStream inputStream = rs.getBinaryStream(1);

 if (inputStream == null) {
 stmt.close();
 return;
 }

 // Here's where things get ugly. Currently, there is no way
 // to display an image from an InputStream. We'll create a
 // new file from the InputStream and load the Image from the
 // newly created file. We need to create a unique name for
 // each icon; the Java VM caches the image file.

 String name = myHome + "/IconStoreImageFile" + id + ".gif";

 FileOutputStream outputStream = new FileOutputStream(name);
 // Write the data
 int bytes = 0;
 byte b[] = new byte[1024];

 while (true) {
 // Read from the input. The number of bytes read is returned.
 bytes = inputStream.read(b);

 if (bytes == -1) {
 break;
 }

 // Write the data

 outputStream.write(b, 0, bytes);
 }
 outputStream.close();
 inputStream.close();

 // Close the statement
 stmt.close();

 // Now, display the icon
 loadFile(name);

 // If there was an image file, delete it
 if (currentFile != null) {
 if (!currentFile.equals(name)) {
 (new File(currentFile)).delete();
 }
 }

 // Save our current file name
 currentFile = name;
 }
 catch (SQLException ex) {

 // An SQLException was generated. Dump the exception contents.
 // Note that there may be multiple SQLExceptions chained
 // together.

 System.out.println("\n*** SQLException caught ***\n");
 while (ex != null) {
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println("Vendor: " + ex.getErrorCode());
 ex = ex.getNextException();
 }
 System.exit(1);
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }

}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Notice that each time an image is selected from the list, the image is read from the database. It could be very costly in
terms of memory resources to save all of the images, so we’ll just get the image from the database when needed. When
the user selects an item from the list, we can get the image description. This description is used to get the icon ID from
the image Hashtable. For the most part, we follow the same steps we have seen several times before in getting results
from a database. Unfortunately, we’ve had to use a very nasty workaround here. The image is retrieved from the
database as a binary InputStream, and it is from this InputStream that we need to draw the image on our canvas. This
technique seems like it should be a simple matter, but it turns out to be impossible as of the writing of this book. To get
around this problem, the IconStore application uses the InputStream to create a temporary file on disk, from which an
image can be loaded and drawn on the canvas. Hopefully, a method to draw images from an InputStream will be part of
Java in the future.

Figure 8.3 shows the IconStore screen after the user has selected an image from the initial category list. Figure 8.4 shows
the IconStore screen after the user has changed the category (from the Icons menu) to sports and has made a selection.

Figure 8.3 Selecting on image from the category list box.

Figure 8.4 Changing the image category.

Saving The Image

All that’s left is to add the ability to save the image to disk. We saw previously how to handle the Save As menu event,
so we just need to be able to create the disk file. Our workaround approach for drawing an image from an InputStream
will be used to our advantage. Because an image file has already been created, we can simply make a copy of the
temporary file. Listing 8.10 shows the code to copy a file.

javascript:displayWindow('images/08-03.jpg',300,400)
javascript:displayWindow('images/08-03.jpg',300,400)
javascript:displayWindow('images/08-04.jpg',300,400)
javascript:displayWindow('images/08-04.jpg',300,400)

Listing 8.10 Copying a file.

//————————————————————————————————————
// copyFile
// Copy the source file to the target file.
//————————————————————————————————————
public boolean copyFile(
 String source,
 String target)
{
 boolean rc = false;

 try {
 FileInputStream in = new FileInputStream(source);
 FileOutputStream out = new FileOutputStream(target);

 int bytes;
 byte b[] = new byte[1024];

 // Read chunks from the input stream and write to the output
 // stream.
 while (true) {
 bytes = in.read(b);
 if (bytes == -1) {
 break;
 }
 out.write(b, 0, bytes);
 }
 in.close();
 out.close();
 rc = true;
 }
 catch (java.lang.Exception ex) {
 ex.printStackTrace();
 }

 return rc;
}

Figure 8.5 shows the IconStore screen after the user has selected the Save As menu option.

Figure 8.5 The IconStore Save As dialog box.

That’s all there is to it.

Summary

javascript:displayWindow('images/08-05.jpg',450,425)
javascript:displayWindow('images/08-05.jpg',450,425)

Let’s recap the important details that we have covered in this chapter:

• Creating a basic GUI Java application
• Opening a connection to a data source
• Using database data to create dynamic GUI components (menus and lists)
• Handling user events
• Handling JDBC InputStreams

If you would like to take the IconStore application further, one obvious enhancement would be to allow the user to add
images to the database. I’ll leave this as an exercise for you.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 9
Java And Database Security

Security is at the top of the list of concerns for people sharing databases on the Internet and large intranets. In this
chapter, we’ll have a look at security in Java and how Java/JDBC security relates to database security. We’ll also have a
peek at the new security features planned for Java, which will incorporate encryption and authentication into the JDBC.

Database Server Security

The first issue I’d like to tackle, and the first one you need to consider, is the security of your actual database server. If
you are allowing direct connections to your database server from your Java/JDBC programs, you need to prepare for a
number of potential security pitfalls. Although security breaks are few and far between, I advise you to cover all the
angles so you don’t get caught off-guard.

Rooting Out The Packet Sniffers

Information is sent over networks in packets, and packet sniffing happens because a computer’s network adapter is
configured to read all of the packets that are sent over the network, instead of just packets meant for that computer.
Therefore, anyone with access to a computer attached to your LAN can check out all transactions as they occur. Of
course, a well-managed network and users you can trust are the best methods of preventing an inside job. Unfortunately,
you must also consider another possibility: the outside threat. The possibility that someone from outside your LAN
might break into a computer inside your LAN is another issue altogether; you must make sure that the other computers
on your LAN are properly secured. To prevent such a situation, a firewall is often the best remedy. Though not
completely foolproof, it does not allow indiscriminate access to any computers that are behind the firewall from outside.
There are several good books on basic Internet security, and this book’s Website contains a list of URLs that highlight
several books on firewalls.

Packet sniffing doesn’t necessarily involve only your local network; it can occur on the route the packet takes from the
remote client machine somewhere on the Internet to your server machine. Along one of the many “hops” a packet takes
as it travels across the Internet, a hacker who has gained entry into one of these hop points could be monitoring the
packets sent to and from your server. Although this is a remote possibility, it’s still a possibility. One solution is to limit
the IP addresses from which connections to the database server can be made. However, IP authorization isn’t bulletproof
either—IP spoofing is a workaround for this method. For more information on these basic security issues, please see this
book’s Web site for references to security material.

Web Server CGI Holes

If you only allow local direct access to your database server via pre-written software, like CGI scripts run from Web
pages, you’ll still find yourself with a possible security hole. Some folks with too much time on their hands take great
pleasure in hacking through CGI scripts to seek out unauthorized information. Are you vulnerable to this type of attack?
Consider this situation: You have a CGI script that searches a table. The HTML form that gives the CGI its search
information uses a field containing a table name; if a hacker realizes that you are directly patching in the table name
from the HTML page, it would be easy to modify the CGI parameters to point to a different table. Of course, the easy

solution to this scenario is to check in the CGI script that only the table you intend to allow to be queried can be
accessed.

For in-house distribution of Java programs that access database servers, many of these security considerations are
minimal. But for Internet applications, such as a merchandising applet where a user enters a credit card number to
purchase some goods, you not only want to send this data encrypted to the Web server, but you want to protect the actual
database server that this sensitive data is stored on.

Finding A Solution

So how do we deal with these security holes? The most straightforward way is to use a database server that implements
secure login encryption. Some database servers do this already, and with the proliferation of “Web databases,” login
encryption is likely to be incorporated into more popular database servers in the future. The other solution, which is
more viable, is to use an application server in a three-tier system. First, the Java program uses encryption to send login
information to the application server. Then, the application server decodes the information. And finally, the application
server sends the decoded information to the database server, which is either running on the same machine or on a
machine attached to a secure local network. We’ll discuss application servers in more detail in Chapter 11.

Another solution involves using the Java Security API, currently under development at Javasoft. This API, which
provides classes that perform encryption and authentication, will be a standard part of the Java API and will allow you to
use plug-in classes to perform encryption on a remote connection.

As a user, how do you know if the Java applet you’re getting is part of a front for an illegitimate business? The Java
Commerce API addresses the security issue of determining whether an applet is from a legitimate source by using digital
signatures, authorization, and certification. Both the Java Commerce API and Java Security API will likely be
incorporated into Web browsers’ Java interpreters, and will also be linked in heavily with the security features of the
Web browser itself. At the time this manuscript was written, however, these APIs were still under construction.

Applet Security: Can I Trust You?

As we’ve seen, setting up safe connections is quite possible. However, applet security is an entirely different issue. This
aspect of security, where an applet that has been downloaded to your computer is running in your Web browser, has been
under scrutiny since Java-enabled Web browsers appeared.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

The Applet Security Manager

Every Web browser’s Java interpreter includes a security manager to determine what an applet can and can’t do. For
instance, the security mangager does not allow applets downloaded from remote Web pages to access the local disk; it
restricts network connections attempted by the applet to only the machine from which the applet came from; and it
restricts applets from gaining control of local system devices. These restrictions are in place to protect users from rogue
applets (or should I say rogue applet programmers) attempting to break into your computer. The user does not need to
worry about the applet formatting the hard disk or reading password files. Of course, I’m simplifying the applet security
scheme, but I want to point out the care that is taken to protect the user, and the restrictions that developers are faced
with when programming applets. So how does this relate to the JDBC? The immediate concern for you as the developer
is that your JDBC applet can only connect to the same machine that served the applet initially (i.e. your Web server).
This means that you must run a Web server on the same machine as your database server. However, if you choose the
application server route that we will discuss in Chapter 11, you must run the application server alongside the Web server,
but then you are free to run the database server on another machine. If the user installs the applet locally and runs it,
these security restrictions do not apply. But unfortunately, that defeats the purpose behind an applet: a program that
comes over the network and begins running locally without installation.

I’m A Certified Applet

To account for these tight security restrictions, the Java Commerce API addresses easing security if the applet comes
from a “trusted” source. This means that if the Web browser recognizes as genuine the certification of the Web page,
applets on the page may also be considered “certified.” To obtain such a status, you must apply for certification from the
proper authority. When you receive certification, simply attach it to applets that are served from your Web site. The
Commerce and Security APIs allow for the fetching of trusted applets, so if the user uses a Java interpreter that
incorporates the Java Commerce API and Security API, you (the developer) can serve applets that can connect to an
application server or database server running on a different machine than the Web server. In fact, you can even attach to
different database servers simultaneously if necessary. In addition, this approach may allow the applet to save the
contents of a database session on the user’s disk, or read data from the user’s disk to load previous session data.

The exact security restrictions of trusted applets are not set in stone, and they may differ depending on the Web browser
the applet is run on. Also, the Java Commerce and Security specifications and related APIs have not been finalized as of
the writing of this book, so much may change from the preliminary details of the security scheme by the time the APIs
are released and implemented.

Summary

Security in data transactions is a top priority in the Internet community. In this chapter, we’ve discussed possible security
holes and techniques to sew them up. We also took a look at Javasoft’s approach to easing security restrictions for
applets that come from a certified trusted source.

In the next chapter, we jump back into the meat of the JDBC when we explore writing JDBC drivers. We’ll explore the
heart of the JDBC’s implementation details, and we’ll also develop a real JDBC driver that can serve as the basis for
drivers you write in the future.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 10
Writing Database Drivers

We’ve covered a lot of territory so far in this book. Now we can put some of your newly gained knowledge to use. In
this chapter, we will explore what it takes to develop a JDBC driver. In doing so, we will also touch on some of the finer
points of the JDBC specification. Throughout this chapter, I will use excerpts from the SimpleText JDBC driver that is
included on the CD-ROM. This driver allows you to manipulate simple text files; you will be able to create and drop
files, as well as insert and select data within a file. The SimpleText driver is not fully JDBC-compliant, but it provides a
strong starting point for developing a driver. We’ll cover what the JDBC components provide, how to implement the
JDBC API interfaces, how to write native code to bridge to an existing non-Java API, some finer points of driver
writing, and the major JDBC API interfaces that must be implemented.

The JDBC Driver Project: SimpleText

The SimpleText JDBC driver is just that—a JDBC driver that manipulates simple text files, with a few added twists. It is
not a full-blown relational database system, so I would not recommend attempting to use it as one. If you are looking for
a good way to prototype a system, or need a very lightweight database system to drive a simplistic application or applet,
then SimpleText is for you. More importantly, though, the SimpleText driver can serve as a starting point for your own
JDBC driver. Before continuing, let’s take a look at the SimpleText driver specifications.

SimpleText SQL Grammar

The SimpleText JDBC driver supports a very limited SQL grammar. This is one reason that the driver is not JDBC
compliant; a JDBC-compliant driver must support ANSI92 entry level SQL grammar. The following SQL statements
define the base SimpleText grammar:

create-table-statement ::= CREATE TABLE table-name

 (column-element [, column-element]...)

drop-table-statement ::= DROP TABLE table-name

insert-statement ::= INSERT INTO table-name

 [(column-identifier [, column-identifier]...)] VALUES

 (insert-value [, insert-value]...)

select-statement ::= SELECT select-list FROM table-name [WHERE search-
 condition]

The following elements are used in these SQL statements:

column-element ::= column-identifier data-type

column-identifier ::= user-defined-name

comparison-operator ::= < | > | = | <>

data-type ::= VARCHAR | NUMBER | BINARY

dynamic-parameter ::= ?

insert-value ::= dynamic-parameter | literal

search-condition ::= column-identifier comparison-operator literal

select-list ::= * | column-identifier [, column-identifier]...

table-name ::= user-defined-name

user-defined-name ::= letter [digit | letter]

What all this grammar means is that the SimpleText driver supports a CREATE TABLE statement, a DROP TABLE
statement, an INSERT statement (with parameters), and a very simple SELECT statement (with a WHERE clause). It
may not seem like much, but this grammar is the foundation that will allow us to create a table, insert some data, and
select it back.

SimpleText File Format

The format of the files used by the SimpleText driver is, of course, very simple. The first line contains a signature,
followed by each one of the column names (and optional data types). Any subsequent lines in the text file are assumed to
be comma-separated data. There is no size limit to the text file, but the larger the file, the longer it takes to retrieve data
(the entire file is read when selecting data; there is no index support). The data file extension is hard coded to be .SDF
(Simple Data File). For example, the statement

CREATE TABLE TEST (COL1 VARCHAR, COL2 NUMBER, COL3 BINARY)

creates a file named TEST.SDF, with the following initial data:

.SDFCOL1,#COL2,@COL3

Note that none of the SQL grammar is case-sensitive. The .SDF is the file signature (this is how the SimpleText driver
validates whether the text file can be used), followed by a comma-separated list of column names. The first character of
the column name can specify the data type of the column. A column name starting with a # indicates a numeric column,
while a column name starting with an @ indicates a binary column. What’s that? Binary data in a text file? Well, not
quite. A binary column actually contains an offset pointer into a sister file. This file, with an extension of .SBF (Simple
Binary File), contains any binary data for columns in the text file, as well as the length of the data (maximum length of
1048576 bytes). Any other column name is considered to be character data (with a maximum length of 5120 bytes). The
following statement shows how data is inserted into the TEST table:

INSERT INTO TEST VALUES ('FOO', 123, '0123456789ABCDEF')

After the INSERT, TEST.SDF will contain the following data:

.SDFCOL1,#COL2,@COL3
FOO,123,0

COL3 contains an offset of zero since this is the first row in the file. This is the offset from within the TEST.SBF table in
which the binary data resides. Starting at the given offset, the first four bytes will be the length indicator, followed by the
actual binary data that was inserted. Note that any character or binary data must be enclosed in single quotation marks.

We’ll be looking at plenty of code from the SimpleText driver throughout this chapter. But first, let’s start by exploring
what is provided by the JDBC developer’s kit.

The DriverManager

The JDBC DriverManager is a static class that provides services to connect to JDBC drivers. The DriverManager is
provided by JavaSoft and does not require the driver developer to perform any implementation. Its main purpose is to
assist in loading and initializing a requested JDBC driver. Other than using the DriverManager to register a JDBC
driver (registerDriver) to make itself known and to provide the logging facility (which is covered in detail later), a
driver does not interface with the DriverManager. In fact, once a JDBC driver is loaded, the DriverManager drops out
of the picture all together, and the application or applet interfaces with the driver directly.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

JDBC Exception Types

JDBC provides special types of exceptions to be used by a driver: SQLException, SQLWarning, and DataTruncation.
The SQLException class is the foundation for the other types of JDBC exceptions, and extends java.lang.Exceptn.
When created, an SQLException can have three pieces of information: a String describing the error, a String
containing the XOPEN SQLstate (as described in the XOPEN SQL specification), and an int containing an additional
vendor or database-specific error code. Also note that SQLExceptions can be chained together; that is, multiple
SQLExceptions can be thrown for a single operation. The following code shows how an SQLException is thrown:

//---
// fooBar
// Demonstrates how to throw an SQLException
//--
public void fooBar()
 throws SQLException
{
 throw new SQLException("I just threw a SQLException");
}

Here’s how you call fooBar and catch the SQLException:

try {
 fooBar();
}
catch (SQLException ex) {

 // If an SQLException is thrown, we'll end up here. Output the error
 // message, SQLstate, and vendor code.
 System.out.println("A SQLException was caught!");
 System.out.println("Message: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Vendor Code: " + ex.getErrorCode());
}

An SQLWarning is similar to an SQLException (it extends SQLException). The main difference is in semantics. If an
SQLException is thrown, it is considered to be a critical error (one that needs attention). If an SQLWarning is thrown,
it is considered to be a non-critical error (a warning or informational message). For this reason, JDBC treats
SQLWarnings much differently than SQLExceptions. SQLExceptions are thrown just like any other type of
exception; SQLWarnings are not thrown, but put on a list of warnings on an owning object type (for instance,
Connection, Statement, or ResultSet, which we’ll cover later). Because they are put on a list, it is up to the application
to poll for warnings after the completion of an operation. Listing 10.1 shows a method that accepts an SQLWarning and
places it on a list.

Listing 10.1 Placing an SQL Warning on a list.

//--
// setWarning
// Sets the given SQLWarning in the warning chain. If null, the
// chain is reset. The local attribute lastWarning is used
// as the head of the chain.
//--- ---------
protected void setWarning(
 SQLWarning warning)
{

 // A null warning can be used to clear the warning stack
 if (warning == null) {
 lastWarning = null;
 }
 else {
 // Set the head of the chain. We'll use this to walk through the
 // chain to find the end.
 SQLWarning chain = lastWarning;

 // Find the end of the chain. When the current warning does
 // not have a next pointer, it must be the end of the chain.
 while (chain.getNextWarning() != null) {
 chain = chain.getNextWarning();
 }

 // We're at the end of the chain. Add the new warning
 chain.setNextWarning(warning);
 }
}

Listing 10.2 uses this method to create two SQLWarnings and chain them together.

Listing 10.2 Chaining SQLWarnings together.

//---
// fooBar
// Do nothing but put two SQLWarnings on our local
// warning stack (lastWarning).
//--
protected void fooBar()
{

 // First step should always be to clear the stack. If a warning
 // is lingering, it will be discarded. It is up to the application to
 // check and clear the stack.
 setWarning(null);

 // Now create our warnings
 setWarning(new SQLWarning("Warning 1"));
 setWarning(new SQLWarning("Warning 2"));
}

Now we’ll call the method that puts two SQLWarnings on our warning stack, then poll for the warning using the JDBC
method getWarnings, as shown in Listing 10.3.

Listing 10.3 Polling for warnings.

// Call fooBar to create a warning chain
fooBar();

// Now, poll for the warning chain. We'll simply dump any warning
// messages to standard output.
SQLWarning chain = getWarnings();

if (chain != null) {
 System.out.println("Warning(s):");

 // Display the chain until no more entries exist
 while (chain != null) {
 System.out.println("Message: " + chain.getMessage());

 // Advance to the next warning in the chain. null will be
 // returned if no more entries exist.
 chain = chain.getNextWarning();

 }
}

DataTruncation objects work in the same manner as SQLWarnings. A DataTruncation object indicates that a data
value that was being read or written was truncated, resulting in a loss of data. The DataTruncation class has attributes
that can be set to specify the column or parameter number, whether a truncation occurred on a read or a write, the size of
the data that should have been transferred, and the number of bytes that were actually transferred. We can modify our
code from Listing 10.2 to include the handling of DataTruncation objects, as shown in Listing 10.4.

Listing 10.4 Creating dDataTruncation warnings.

//--
// fooBar
// Do nothing but put two SQLWarnings on our local
// warning stack (lastWarning) and a DataTruncation
// warning.
//--
protected void fooBar()
{

 // First step should always be to clear the stack. If a warning
 // is lingering, it will be discarded. It is up to the application to
 // check and clear the stack.
 setWarning(null);

 // Now create our warnings
 setWarning(new SQLWarning("Warning 1"));
 setWarning(new SQLWarning("Warning 2"));

 // And create a DataTruncation indicating that a truncation
 // occurred on column 1, 1000 bytes were requested to
 // read, and only 999 bytes were read.
 setWarning(new DataTruncation(1, false, true, 1000, 999);
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Listing 10.5 shows the modified code to handle the DataTruncation.

Listing 10.5 Processing DataTruncation warnings.

// Call fooBar to create a warning chain
fooBar();

// Now, poll for the warning chain. We'll simply dump any warning
// messages to standard output.
SQLWarning chain = getWarnings();

if (chain != null) {
 System.out.println("Warning(s):");

 // Display the chain until no more entries exist
 while (chain != null) {
 // The only way we can tell if this warning is a DataTruncation
 // is to attempt to cast it. This may fail, indicating that
 // it is just an SQLWarning.
 try {
 DataTruncation trunc = (DataTruncation) chain;
 System.out.println("Data Truncation on column: " +
 trunc.getIndex());
 }
 catch (Exception ex) {
 System.out.println("Message: " + chain.getMessage());
 }

 // Advance to the next warning in the chain. null will be
 // returned if no more entries exist.
 chain = chain.getNextWarning();
 }
}

JDBC Data Types

The JDBC specification provides definitions for all of the SQL data types that can be supported by a JDBC driver. Only
a few of these data types may be natively supported by a given database system, which is why data coercion becomes
such a vital service (we’ll discuss data coercion a little later in this chapter). The data types are defined in Types.class:

public class Types
{

 public final static int BIT = -7;
 public final static int TINYINT = -6;

 public final static int SMALLINT = 5;
 public final static int INTEGER = 4;
 public final static int BIGINT = -5;
 public final static int FLOAT = 6;
 public final static int REAL = 7;
 public final static int DOUBLE = 8;
 public final static int NUMERIC = 2;
 public final static int DECIMAL = 3;
 public final static int CHAR = 1;
 public final static int VARCHAR = 12;
 public final static int LONGVARCHAR = -1;
 public final static int DATE = 91;
 public final static int TIME = 92;
 public final static int TIMESTAMP = 93;
 public final static int BINARY = -2;
 public final static int VARBINARY = -3;
 public final static int LONGVARBINARY = -4;
 public final static int OTHER = 1111;
}

At a minimum, a JDBC driver must support one (if not all) of the character data types (CHAR, VARCHAR, and
LONGVARCHAR). A driver may also support driver-specific data types (OTHER) which can only be accessed in a
JDBC application as an Object. In other words, you can get data as some type of object and put it back into a database as
that same type of object, but the application has no idea what type of data is actually contained within. Let’s take a look
at each of the data types more closely.

Character Data: CHAR, VARCHAR, And LONGVARCHAR

CHAR, VARCHAR, and LONGVARCHAR data types are used to express character data. These data types are
represented in JDBC as Java String objects. Data of type CHAR is represented as a fixed-length String, and may
include some padding spaces to ensure that it is the proper length. If data is being written to a database, the driver must
ensure that the data is properly padded. Data of type VARCHAR is represented as a variable-length String, and is
trimmed to the actual length of the data. LONGVARCHAR data can be either a variable-length String or returned by
the driver as a Java InputStream, allowing the data to be read in chunks of whatever size the application desires.

Exact Numeric Data: NUMERIC And DECIMAL

The NUMERIC and DECIMAL data types are used to express signed, exact numeric values with a fixed number of
decimal places. These data types are often used to represent currency values. NUMERIC and DECIMAL data are both
represented in JDBC as Numeric objects. The Numeric class is new with JDBC, and we’ll be discussing it shortly.

Binary Data: BINARY, VARBINARY, And LONGVARBINARY

The BINARY, VARBINARY, and LONGVARBINARY data types are used to express binary (non-character) data.
These data types are represented in JDBC as Java byte arrays. Data of type BINARY is represented as a fixed-length
byte array, and may include some padding zeros to ensure that it is the proper length. If data is being written to a
database, the driver must ensure that the data is properly padded. Data of type VARBINARY is represented as a
variable-length byte array, and is trimmed to the actual length of the data. LONGVARBINARY data can either be a
variable-length byte array or returned by the driver as a Java InputStream, allowing the data to be read in chunks of
whatever size the application desires.

Boolean Data: BIT

The BIT data type is used to represent a boolean value—either true or false—and is represented in JDBC as a Boolean
object or boolean data type.

Integer Data: TINYINT, SMALLINT, INTEGER, And BIGINT

The TINYINT, SMALLINT, INTEGER, and BIGINT data types are used to represent signed integer data. Data of
type TINYINT is represented in JDBC as a Java byte data type (1 byte), with a minimum value of -128 and a maximum
value of 127. Data of type SMALLINT is represented in JDBC as a Java short data type (2 bytes), with a minimum
value of -32,768 and a maximum value of 32,767. Data of type INTEGER is represented as a Java int data type (4
bytes), with a minimum value of -2,147,483,648 and a maximum value of 2,147,483,647. Data of type BIGINT is
represented as a Java long data type (8 bytes), with a minimum value of -9,223,372,036,854,775,808 and a maximum
value of 9,223,372,036,854,775,807.

Floating-Point Data: REAL, FLOAT, And DOUBLE

The REAL, FLOAT, and DOUBLE data types are used to represent signed, approximate values. Data of type REAL
supports seven digits of mantissa precision, and is represented as a Java float data type. Data of types FLOAT and
DOUBLE support 15 digits of mantissa precision, and are represented as Java double data types.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Time Data: DATE, TIME, And TIMESTAMP

The DATE, TIME, and TIMESTAMP data types are used to represent dates and times. Data of type DATE supports
specification of the month, day, and year, and is represented as a JDBC Date object. Data of type TIME supports
specification of the hour, minutes, seconds, and milliseconds, and is represented as a JDBC Time object. Data of type
TIMESTAMP supports specification of the month, day, year, hour, minutes, seconds, and milliseconds, and is
represented as a JDBC Timestamp object. The Date, Time, and Timestamp objects, which we’ll get into a bit later, are
new with JDBC.

Tip: Be aware of date limitations.
One important note about Date and Timestamp objects: The Java calendar starts at January 1, 1970, which
means that you cannot represent dates prior to 1970.

New Data Classes

The JDBC API introduced several new data classes. These classes were developed to solve specific data-representation
problems like how to accurately represent fixed-precision numeric values (such as currency values) for NUMERIC and
DECIMAL data types, and how to represent time data for DATE, TIME, and TIMESTAMP data types.

Numeric

As mentioned before, the Numeric class was introduced with the JDBC API to represent signed, exact numeric values
with a fixed number of decimal places. This class is ideal for representing monetary values, allowing accurate arithmetic
operations and comparisons. Another aspect is the ability to change the rounding value. Rounding is performed if the
value of the scale (the number of fixed decimal places) plus one digit to the right of the decimal point is greater than the
rounding value. By default, the rounding value is 4. For example, if the result of an arithmetic operation is 2.495, and the
scale is 2, the number is rounded to 2.50. Listing 10.6 provides an example of changing the rounding value. Imagine that
you are a devious retailer investigating ways to maximize your profit by adjusting the rounding value.

Listing 10.6 Changing the rounding value.

import java.sql.*;

class NumericRoundingValueTest {

 public static void main(String args[]) {

 // Set our price and discount amounts
 Numeric price = new Numeric(4.91, 2);
 Numeric discount = new Numeric(0.15, 2);
 Numeric newPrice;

 // Give the item a discount
 newPrice = discountItem(price, discount);

 System.out.println("discounted price="+newPrice.toString());

 // Now, give the item a discount with a higher rounding value.
 // This will lessen the discount amount in many cases.
 discount.setRoundingValue(9);

 newPrice = discountItem(price, discount);

 System.out.println("discounted price with high rounding="+
 newPrice.toString());
 }

 // Perform the calculation to discount a price
 public static Numeric discountItem(
 Numeric price,
 Numeric discount)
 {
 return price.subtract(price.multiply(discount));
 }
}

Listing 10.6 produces the following output:

discounted price=004.17
discounted price with high rounding=004.18

Date

The Date class is used to represent dates in the ANSI SQL format YYYY-MM-DD, where YYYY is a four-digit year,
MM is a two-digit month, and DD is a two-digit day. The JDBC Date class extends the existing java.util.Date class
(setting the hour, minutes, and seconds to zero) and, most importantly, adds two methods to convert Strings into dates,
and vice-versa:

// Create a Date object with a date of June 30th, 1996
Date d = Date.valueOf("1996-06-30");

// Print the date
System.out.println("Date=" + d.toString());

// Same thing, without leading zeros
Date d2 = Date.valueOf("1996-6-30");
System.out.println("Date=" + d2.toString());

The Date class also serves very well in validating date values. If an invalid date string is passed to the valueOf method,
a java.lang.IllegalArgument-Exception is thrown:

String s;

// Get the date from the user
.
.

.
// Validate the date
try {
 Date d = Date.valueOf(s);
}
catch (java.lang.IllegalArgumentException ex) {
 // Invalid date, notify the application
 .
 .
 .
}

It is worth mentioning again that the Java date epoch is January 1, 1970; therefore, you cannot represent any date values
prior to January 1, 1970, with a Date object.

Time

The Time class is used to represent times in the ANSI SQL format HH:MM:SS, where HH is a two-digit hour, MM is a
two-digit minute, and SS is a two-digit second. The JDBC Time class extends the existing java.util.Date class (setting
the year, month, and day to zero) and, most importantly, adds two methods to convert Strings into times, and vice-versa:

// Create a Time object with a time of 2:30:08 pm
Time t = Time.valueOf("14:30:08");

// Print the time
System.out.println("Time=" + t.toString());

// Same thing, without leading zeros
Time t2 = Time.valueOf("14:30:8");
System.out.println("Time=" + t2.toString());

The Time class also serves very well in validating time values. If an invalid time string is passed to the valueOf method,
a java.lang.IllegalArgument-Exception is thrown:

String s;

// Get the time from the user
.
.
.
// Validate the time
try {
 Time t = Time.valueOf(s);
}
catch (java.lang.IllegalArgumentException ex) {
 // Invalid time, notify the application
 .
 .
 .
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Timestamp

The Timestamp class is used to represent a combination of date and time values in the ANSI SQL format YYYY-MM-
DD HH:MM:SS.F..., where YYYY is a four-digit year, MM is a two-digit month, DD is a two-digit day, HH is a two-
digit hour, MM is a two-digit minute, SS is a two-digit second, and F is an optional fractional second up to nine digits in
length. The JDBC Timestamp class extends the existing java.util.Date class (adding the fraction seconds) and, most
importantly, adds two methods to convert Strings into timestamps, and vice-versa:

// Create a Timestamp object with a date of 1996-06-30 and a time of
// 2:30:08 pm.
Timestamp t = Timestamp.valueOf("1996-06-30 14:30:08");

// Print the timestamp

System.out.println("Timestamp=" + t.toString());

// Same thing, without leading zeros
Timestamp t2 = Timestamp.valueOf("1996-6-30 14:30:8");
System.out.println("Timestamp=" + t2.toString());

The Timestamp class also serves very well in validating timestamp values. If an invalid time string is passed to the
valueOf method, a java.lang.Illegal-ArgumentException is thrown:

String s;

// Get the timestamp from the user
.
.
.
// Validate the timestamp
try {
 Timestamp t = Timestamp.valueOf(s);
}
catch (java.lang.IllegalArgumentException ex) {
 // Invalid timestamp, notify the application
 .
 .
 .
}

As is the case with the Date class, the Java date epoch is January 1, 1970; therefore, you cannot represent any date
values prior to January 1, 1970, with a Timestamp object.

Native Drivers: You’re Not From Around Here, Are Ya?

Before beginning to implement a JDBC driver, the first question that must be answered is: Will this driver be written
completely in Java, or will it contain native (machine dependent) code? You may be forced to use native code because
many major database systems—such as Oracle, Sybase, and SQLServer—do not provide Java client software. In this
case, you will need to write a small library containing C code to bridge from Java to the database client API (the JDBC
to ODBC Bridge is a perfect example). The obvious drawback is that the JDBC driver is not portable and cannot be
automatically downloaded by today’s browsers.

If a native bridge is required for your JDBC driver, you should keep a few things in mind. First, do as little as possible in
the C bridge code; you will want to keep the bridge as small as possible, ideally creating just a Java wrapper around the
C API. Most importantly, avoid the temptation of performing memory management in C (i.e. malloc). This is best left in
Java code, since the Java Virtual Machine so nicely takes care of garbage collection. Secondly, keep all of the native
method declarations in one Java class. By doing so, all of the bridge routines will be localized and much easier to
maintain. Finally, don’t make any assumptions about data representation. An integer value may be 2 bytes on one
system, and 4 bytes on another. If you are planning to port the native bridge code to a different system (which is highly
likely), you should provide native methods that provide the size and interpretation of data.

Listing 10.7 illustrates these suggestions. This module contains all of the native method declarations, as well as the code
to load our library. The library will be loaded when the class is instantiated.

Listing 10.7 Java native methods.

//--
// MyBridge.java
//
// Sample code to demonstrate the use of native methods
//--
package jdbc.test;

import java.sql.*;

public class MyBridge
 extends Object
{
 //--
 // Constructor
 // Attempt to load our library. If it can't be loaded, an
 // SQLException will be thrown.
 //--
 public MyBridge()
 throws SQLException
 {
 try {
 // Attempt to load our library. For Win95/NT, this will
 // be myBridge.dll. For Unix systems, this will be
 // libmyBridge.so.
 System.loadLibrary("myBridge");
 }
 catch (UnsatisfiedLinkError e) {
 throw new SQLException("Unable to load myBridge library");
 }
 }
 //--
 // Native method declarations
//--

 // Get the size of an int

 public native int getINTSize();

 // Given a byte array, convert it to an integer value
 public native int getINTValue(byte intValue[]);

 // Call some C function that does something with a String, and
 // returns an integer value.
 public native void callSomeFunction(String stringValue, byte
 intValue[]);
}

Once this module has been compiled (javac), a Java generated header file and C file must be created:

javah jdbc.test.MyBridge
javah -stubs jdbc.test.MyBridge

These files provide the mechanism for the Java and C worlds to communicate with each other. Listing 10.8 shows the
generated header file (jdbc_test_MyBridge.h, in this case), which will be included in our C bridge code.

Listing 10.8 Machine-generated header file for native methods.

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <native.h>
/* Header for class jdbc_test_MyBridge */

#ifndef _Included_jdbc_test_MyBridge
#define _Included_jdbc_test_MyBridge

typedef struct Classjdbc_test_MyBridge {
 char PAD; /* ANSI C requires structures to have at least one member */
} Classjdbc_test_MyBridge;
HandleTo(jdbc_test_MyBridge);

#ifdef __cplusplus
extern "C" {
#endif
__declspec(dllexport) long jdbc_test_MyBridge_getINTSize(struct
Hjdbc_test_MyBridge *);
__declspec(dllexport) long jdbc_test_MyBridge_getINTValue(struct
Hjdbc_test_MyBridge *,HArrayOfByte *);
struct Hjava_lang_String;
__declspec(dllexport) void jdbc_test_MyBridge_callSomeFunction(struct
Hjdbc_test_MyBridge *,struct Hjava_lang_String *,HArrayOfByte *);
#ifdef __cplusplus
}
#endif
#endif

The generated C file (shown in Listing 10.9) must be compiled and linked with the bridge.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Listing 10.9 Machine-generated C file for native methods.

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <StubPreamble.h>

/* Stubs for class jdbc/test/MyBridge */
/* SYMBOL: "jdbc/test/MyBridge/getINTSize()I",
Java_jdbc_test_MyBridge_getINTSize_stub */
__declspec(dllexport) stack_item
*Java_jdbc_test_MyBridge_getINTSize_stub(stack_item *_P_,struct
execenv
*_EE_) {
 extern long jdbc_test_MyBridge_getINTSize(void *);
 P[0].i = jdbc_test_MyBridge_getINTSize(_P_[0].p);
 return _P_ + 1;
 }
 /* SYMBOL: "jdbc/test/MyBridge/getINTValue([B)I",
 Java_jdbc_test_MyBridge_getINTValue_stub */
 __declspec(dllexport) stack_item
 *Java_jdbc_test_MyBridge_getINTValue_stub(stack_item *_P_,struct execenv
*_EE_) {
 extern long jdbc_test_MyBridge_getINTValue(void *,void *);
 P[0].i = jdbc_test_MyBridge_getINTValue(_P_[0].p,((_P_[1].p)));
 return _P_ + 1;
}
/* SYMBOL: "jdbc/test/MyBridge/callSomeFunction(Ljava/lang/String;[B)V",
Java_jdbc_test_MyBridge_callSomeFunction_stub */
__declspec(dllexport) stack_item
*Java_jdbc_test_MyBridge_callSomeFunction_stub(stack_item *_P_,struct
execenv *_EE_) {
 extern void jdbc_test_MyBridge_callSomeFunction(void *,void *,void
 *);
 (void) jdbc_test_MyBridge_callSomeFunction(_P_[0].p,((_P_[1].p)),
 ((_P_[2].p)));return _P_;
}

The bridge code is shown in Listing 10.10. The function prototypes were taken from the generated header file.

Listing 10.10 Bridge code.

//--
// MyBridge.c
//
// Sample code to demonstrate the use of native methods
//--

#include <stdio.h>
#include <ctype.h>
#include <string.h>

// Java internal header files
#include "StubPreamble.h"
#include "javaString.h"

// Our header file generated by JAVAH
#include "jdbc_test_MyBridge.h"

//--
// getINTSize
// Return the size of an int
//--
long jdbc_test_MyBridge_getINTSize(
 struct Hjdbc_test_MyBridge *caller)
{
 return sizeof(int);
}

//--
// getINTValue
// Given a buffer, return the value as an int
//--
long jdbc_test_MyBridge_getINTValue(
 struct Hjdbc_test_MyBridge *caller,
 HArrayOfByte *buf)
{
 // Cast our array of bytes to an integer pointer
 int* pInt = (int*) unhand (buf)->body;

 // Return the value
 return (long) *pInt;
}

//--
// callSomeFunction
// Call some function that takes a String and an int pointer as arguments
//--
void jdbc_test_MyBridge_callSomeFunction(
 struct Hjdbc_test_MyBridge *caller,
 struct Hjava_lang_String *stringValue,
 HArrayOfByte *buf)
{

 // Cast the string into a char pointer
 char* pString = (char*) makeCString (stringValue);

 // Cast our array of bytes to an integer pointer
 int* pInt = (int*) unhand (buf)->body;

 // This fictitious function will print the string, then return the
 // length of the string in the int pointer.
 printf("String value=%s\n", pString);
 *pInt = strlen(pString);
}

Now, create a library (DLL or Shared Object) by compiling this module and linking it with the jdbc_test_MyDriver
compiled object and the one required Java library, javai.lib. Here’s the command line I used to build it for Win95/NT:

cl -DWIN32 mybridge.c jdbc_test_mybridge.c -FeMyBridge.dll -MD -LD javai.lib

Now we can use our native bridge, as shown in Listing 10.11.

Listing 10.11 Implementing the bridge.

import jdbc.test.*;
import java.sql.*;

class Test {

 public static void main (String args[]) {

 MyBridge myBridge = null;
 boolean loaded = false;

 try {

 // Create a new bridge object. If it is unable to load our
 // native library, an SQLException will be thrown.
 myBridge = new MyBridge();
 loaded = true;
 }
 catch (SQLException ex) {
 System.out.println("SQLException: " + ex.getMessage());
 }

 // If the bridge was loaded, use the native methods
 if (loaded) {

 // Allocate storage for an int
 byte intValue[] = new byte[myBridge.getINTSize()];

 // Call the bridge to perform some function with a string,
 // returning a value in the int buffer.
 myBridge.callSomeFunction("Hello, World.", intValue);

 // Get the value out of the buffer.
 int n = myBridge.getINTValue(intValue);

 System.out.println("INT value=" + n);
 }
 }
}

Listing 10.11 produces the following output:

String value=Hello, World.
INT value=13

As you can see, using native methods is very straightforward. Developing a JDBC driver using a native bridge is a
natural progression for existing database systems that provide a C API. The real power and ultimate solution, though, is

to develop non-native JDBC drivers—those consisting of 100 percent Java code.

Implementing Interfaces

The JDBC API specification provides a series of interfaces that must be implemented by the JDBC driver developer. An
interface declaration creates a new reference type consisting of constants and abstract methods. An interface cannot
contain any implementations (that is, executable code). What does all of this mean? The JDBC API specification dictates
the methods and method interfaces for the API, and a driver must fully implement these interfaces. A JDBC application
makes method calls to the JDBC interface, not a specific driver. Because all JDBC drivers must implement the same
interface, they are interchangeable.

There are a few rules that you must follow when implementing interfaces. First, you must implement the interface
exactly as specified. This includes the name, return value, parameters, and throws clause. Secondly, you must be sure to
implement all interfaces as public methods. Remember, this is the interface that other classes will see; if it isn’t public,
it can’t be seen. Finally, all methods in the interface must be implemented. If you forget, the Java compiler will kindly
remind you.

Take a look at Listing 10.12 for an example of how interfaces are used. The code defines an interface, implements the
interface, and then uses the interface.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Listing 10.12 Working with interfaces.

//--
// MyInterface.java
//
// Sample code to demonstrate the use of interfaces
//--
package jdbc.test;

public interface MyInterface
{
 //--
 // Define 3 methods in this interface
//--
 void method1();
 int method2(int x);
 String method3(String y);
}
//--
// MyImplementation.java
//
// Sample code to demonstrate the use of interfaces
//--

package jdbc.test;

public class MyImplementation
 implements jdbc.test.MyInterface
{
//--
 // Implement the 3 methods in the interface
//--
 public void method1()
 {
 }

 public int method2(int x)
 {
 return addOne(x);
 }

 public String method3(String y)
 {
 return y;
 }
 //--
 // Note that you are free to add methods and attributes to this

 // new class that were not in the interface, but they cannot be
 // seen from the interface.
//--
 protected int addOne(int x)
 {
 return x + 1;
 }
}
//--
// TestInterface.java
//
// Sample code to demonstrate the use of interfaces
//--
import jdbc.test.*;

class TestInterface {

 public static void main (String args[])
 {
 // Create a new MyImplementation object. We are assigning the
 // new object to a MyInterface variable, thus we will only be
 // able to use the interface methods.
 MyInterface myInterface = new MyImplementation();

 // Call the methods
 myInterface.method1();
 int x = myInterface.method2(1);
 String y = myInterface.method3("Hello, World.");

 }
}

As you can see, implementing interfaces is easy. We’ll go into more detail with the major JDBC interfaces later in this
chapter. But first, we need to cover some basic foundations that should be a part of every good JDBC driver.

Tracing

One detail that is often overlooked by software developers is providing a facility to enable debugging. The JDBC API
does provide methods to enable and disable tracing, but it is ultimately up to the driver developer to provide tracing
information in the driver. It becomes even more critical to provide a detailed level of tracing when you consider the
possible wide-spread distribution of your driver. People from all over the world may be using your software, and they
will expect a certain level of support if problems arise. For this reason, I consider it a must to trace all of the JDBC API
method calls (so that a problem can be re-created using the output from a trace).

Turning On Tracing

The DriverManager provides a method to set the tracing PrintStream to be used for all of the drivers; not only those
that are currently active, but any drivers that are subsequently loaded. Note that if two applications are using JDBC, and
both have turned tracing on, the PrintStream that is set last will be shared by both applications. The following code
snippet shows how to turn tracing on, sending any trace messages to a local file:

try {
 // Create a new OuputStream using a file. This may fail if the
 // calling application/applet does not have the proper security
 // to write to a local disk.
 java.io.OutputStream outFile = new

 java.io.FileOutputStream("jdbc.out");

 // Create a PrintStream object using our newly created OuputStream
 // object. The second parameter indicates to flush all output with
 // each write. This ensures that all trace information gets written
 // into the file.
 java.io.PrintStream outStream = new java.io.PrintStream(outFile,
 true);

 // Enable the JDBC tracing, using the PrintStream
 DriverManager.setLogStream(outStream);
}
catch (Exception ex) {
 // Something failed during enabling JDBC tracing. Notify the
 // application that tracing is not available.
 .
 .
 .
}

Using this code, a new file named jdbc.out will be created (if an existing file already exists, it will be overwritten), and
any tracing information will be saved in the file.

Writing Tracing Information

The DriverManager also provides a method to write information to the tracing OutputStream. The println method
will first check to ensure that a trace OutputStream has been registered, and if so, the println method of the
OutputStream will be called. Here’s an example of writing trace information:

// Send some information to the JDBC trace OutputStream
String a = "The quick brown fox ";
String b = "jumped over the ";
String c = "lazy dog";

DriverManager.println("Trace=" + a + b + c);

In this example, a String message of “Trace=The quick brown fox jumped over the lazy dog” will be constructed, the
message will be provided as a parameter to the DriverManager.println method, and the message will be written to the
OutputStream being used for tracing (if one has been registered).

Some of the JDBC components are also nice enough to provide tracing information. The DriverManager object traces
most of its method calls. SQLException also sends trace information whenever an exception is thrown. If you were to
use the previous code example and enable tracing to a file, the following example output will be created when attempting
to connect to the SimpleText driver:

DriverManager.initialize: jdbc.drivers = null
JDBC DriverManager initialized
registerDriver: driver[className=jdbc.SimpleText.SimpleTextDriver,context=null,
jdbc.SimpleText.SimpleTextDriver@1393860]
DriverManager.getConnection("jdbc:SimpleText")
trying
driver[className=jdbc.SimpleText.SimpleTextDriver,context=null,
jdbc.SimpleText.SimpleTextDriver@1393860]
driver[className=jdbc.SimpleText.SimpleTextDriver,context=null,j
dbc.SimpleText.SimpleTextDriver@1393860]

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Checking For Tracing

I have found it quite useful for both the application and the driver to be able to test for the presence of a tracing
PrintStream. The JDBC API provides us with a method to determine if tracing is enabled, as shown here:

//--
// traceOn
// Returns true if tracing (logging) is currently enabled
//--
public static boolean traceOn()
{

 // If the DriverManager log stream is not null, tracing
 // must be currently enabled.
 return (DriverManager.getLogStream() != null);

}

From an application, you can use this method to check if tracing has been previously enabled before blindly setting it:

// Before setting tracing on, check to make sure that tracing is not
// already turned on. If it is, notify the application.
if (traceOn()) {
 // Issue a warning that tracing is already enabled
 .
 .
 .
}

From the driver, I use this method to check for tracing before attempting to send information to the PrintStream. In the
example where we traced the message text of “Trace=The quick brown fox jumped over the lazy dog,” a lot had to
happen before the message was sent to the DriverManager.println method. All of the given String objects had to be
concatenated, and a new String had to be constructed. That’s a lot of overhead to go through before even making the
println call, especially if tracing is not enabled (which will probably be the majority of the time). So, for performance
reasons, I prefer to ensure that tracing has been enabled before assembling my trace message:

// Send some information to the JDBC trace OutputStream
String a = "The quick brown fox ";
String b = "jumped over the ";
String c = "lazy dog";

// Make sure tracing has been enabled
if (traceOn()) {
 DriverManager.println("Trace=" + a + b + c);
}

Data Coercion

At the heart of every JDBC driver is data. That is the whole purpose of the driver: providing data. Not only providing it,
but providing it in a requested format. This is what data coercion is all about—converting data from one format to
another. As Figure 10.1 shows, JDBC specifies the necessary conversions.

Figure 10.1 JDBC data conversion table.

In order to provide reliable data coercion, a data wrapper class should be used. This class contains a data value in some
known format and provides methods to convert it to a specific type. As an example, I have included the CommonValue
class from the SimpleText driver in Listing 10.13. This class has several overloaded constructors that accept different
types of data values. The data value is stored within the class, along with the type of data (String, Integer, etc.). A series
of methods are then provided to get the data in different formats. This class greatly reduces the burden of the JDBC
driver developer, and can serve as a fundamental class for any number of drivers.

Listing 10.13 The CommonValue class.

package jdbc.SimpleText;

import java.sql.*;

public class CommonValue
 extends Object
{
 //--
 // Constructors
//--
 public CommonValue()
 {
 data = null;
 }

 public CommonValue(String s)
 {
 data = (Object) s;
 internalType = Types.VARCHAR;
 }

 public CommonValue(int i)
 {
 data = (Object) new Integer(i);
 internalType = Types.INTEGER;
 }

 public CommonValue(Integer i)
 {

javascript:displayWindow('images/10-01.jpg',493,496)
javascript:displayWindow('images/10-01.jpg',493,496)

 data = (Object) i;
 internalType = Types.INTEGER;
 }

 public CommonValue(byte b[])
 {
 data = (Object) b;
 internalType = Types.VARBINARY;
 }

//---
 // isNull
 // returns true if the value is null
//--
 public boolean isNull()
 {
 return (data == null);
 }
 //--
 // getMethods
//--

 // Attempt to convert the data into a String. All data types
 // should be able to be converted.
 public String getString()
 throws SQLException
 {
 String s;

 // A null value always returns null
 if (data == null) {
 return null;
 }

 switch(internalType) {

 case Types.VARCHAR:
 s = (String) data;
 break;

 case Types.INTEGER:
 s = ((Integer) data).toString();
 break;

 case Types.VARBINARY:
 {
 // Convert a byte array into a String of hex digits
 byte b[] = (byte[]) data;
 int len = b.length;
 String digits = "0123456789ABCDEF";
 char c[] = new char[len * 2];

 for (int i = 0; i < len; i++) {
 c[i * 2] = digits.charAt((b[i] >> 4) & 0x0F);
 c[(i * 2) + 1] = digits.charAt(b[i] & 0x0F);
 }
 s = new String(c);
 }
 break;

 default:
 throw new SQLException("Unable to convert data type to
 String: " +
 internalType);
 }

 return s;
 }

 // Attempt to convert the data into an int
 public int getInt()
 throws SQLException
 {
 int i = 0;

 // A null value always returns zero
 if (data == null) {
 return 0;
 }

 switch(internalType) {

 case Types.VARCHAR:
 i = (Integer.valueOf((String) data)).intValue();
 break;

 case Types.INTEGER:
 i = ((Integer) data).intValue();
 break;

 default:
 throw new SQLException("Unable to convert data type to
 String: " +
 internalType);
 }

 return i;
 }

 // Attempt to convert the data into a byte array
 public byte[] getBytes()
 throws SQLException
 {
 byte b[] = null;

 // A null value always returns null
 if (data == null) {
 return null;
 }

 switch(internalType) {

 case Types.VARCHAR:
 {

 // Convert the String into a byte array. The String must
 // contain an even number of hex digits.

 String s = ((String) data).toUpperCase();
 String digits = "0123456789ABCDEF";
 int len = s.length();
 int index;

 if ((len % 2) != 0) {
 throw new SQLException(
 "Data must have an even number of hex
 digits");
 }

 b = new byte[len / 2];

 for (int i = 0; i < (len / 2); i++) {
 index = digits.indexOf(s.charAt(i * 2));

 if (index < 0) {
 throw new SQLException("Invalid hex digit");
 }

 b[i] = (byte) (index << 4);
 index = digits.indexOf(s.charAt((i * 2) + 1));

 if (index < 0) {
 throw new SQLException("Invalid hex digit");
 }
 b[i] += (byte) index;
 }
 }
 break;

 case Types.VARBINARY:
 b = (byte[]) data;
 break;

 default:
 throw new SQLException("Unable to convert data type to
 byte[]: " +
 internalType);
 }
 return b;
 }

 protected Object data;
 protected int internalType;
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Note that the SimpleText driver supports only character, integer, and binary data; thus, CommonValue only accepts
these data types, and only attempts to convert data to these same types. A more robust driver would need to further
implement this class to include more (if not all) data types.

Escape Clauses

Another consideration when implementing a JDBC driver is processing escape clauses. Escape clauses are used as
extensions to SQL and provide a method to perform DBMS-specific extensions, which are interoperable among
DBMSes. The JDBC driver must accept escape clauses and expand them into the native DBMS format before processing
the SQL statement. While this sounds simple enough on the surface, this process may turn out to be an enormous task. If
you are developing a driver that uses an existing DBMS, and the JDBC driver simply passes SQL statements to the
DBMS, you may have to develop a parser to scan for escape clauses.

The following types of SQL extensions are defined:

• Date, time, and timestamp data
• Scalar functions such as numeric, string, and data type conversion
• LIKE predicate escape characters
• Outer joins
• Procedures

The JDBC specification does not directly address escape clauses; they are inherited from the ODBC specification. The
syntax defined by ODBC uses the escape clause provided by the X/OPEN and SQL Access Group SQL CAE
specification (1992). The general syntax for an escape clause is:

{escape}

We’ll cover the specific syntax for each type of escape clause in the following sections.

Date, Time, And Timestamp

The date, time, and timestamp escape clauses allow an application to specify date, time, and timestamp data in a
uniform manner, without concern to the native DBMS format (for which the JDBC driver is responsible). The syntax for
each (respectively) is

{d 'value'}
{t 'value'}
{ts 'value'}

where d indicates value is a date in the format yyyy-mm-dd, t indicates value is a time in the format hh:mm:ss, and ts
indicates value is a timestamp in the format yyyy-mm-dd hh:mm:ss[.f...]. The following SQL statements illustrate the
use of each:

UPDATE EMPLOYEE SET HIREDATE={d '1992-04-01'}
UPDATE EMPLOYEE SET LAST_IN={ts '1996-07-03 08:00:00'}
UPDATE EMPLOYEE SET BREAK_DUE={t '10:00:00'}

Scalar Functions

The five types of scalar functions—string, numeric, time and date, system, and data type conversion—all use the syntax:

{fn scalar-function}

To determine what type of string functions a JDBC driver supports, an application can use the DatabaseMetaData
method getStringFunctions. This method returns a comma-separated list of string functions, possibly containing ASCII,
CHAR, CONCAT, DIFFERENCE, INSERT, LCASE, LEFT, LENGTH, LOCATE, LTRIM, REPEAT, REPLACE,
RIGHT, RTRIM, SOUNDEX, SPACE, SUBSTRING, and/or UCASE.

To determine what type of numeric functions a JDBC driver supports, an application can use the DatabaseMetaData
method getNumericFunctions. This method returns a comma-separated list of numeric functions, possibly containing
ABS, ACOS, ASIN, ATAN, ATAN2, CEILING, COS, COT, DEGREES, EXP, FLOOR, LOG, LOG10, MOD, PI,
POWER, RADIANS, RAND, ROUND, SIGN, SIN, SQRT, TAN, and/or TRUNCATE.

To determine what type of system functions a JDBC driver supports, an application can use the DatabaseMetaData
method getSystemFunctions. This method returns a comma-separated list of system functions, possibly containing
DATABASE, IFNULL, and/or USER.

To determine what type of time and date functions a JDBC driver supports, an application can use the
DatabaseMetaData method getTimeDateFunctions. This method returns a comma-separated list of time and date
functions, possibly containing CURDATE, CURTIME, DAYNAME, DAYOFMONTH, DAYOFWEEK,
DAYOFYEAR, HOUR, MINUTE, MONTH, MONTHNAME, NOW, QUARTER, SECOND, TIMESTAMPADD,
TIMESTAMPDIFF, WEEK, and/or YEAR.

To determine what type of explicit data type conversions a JDBC driver supports, an application can use the
DatabaseMetaData method supportsConvert. This method has two parameters: a from SQL data type and a to SQL
data type. If the explicit data conversion between the two SQL types is supported, the method returns true. The syntax
for the CONVERT function is

{fn CONVERT(value, data_type)}

where value is a column name, the result of another scalar function, or a literal, and data_type is one of the JDBC SQL
types listed in the Types class.

LIKE Predicate Escape Characters

In a LIKE predicate, the “%” (percent character) matches zero or more of any character, and the “_” (underscore
character) matches any one character. In some instances, an SQL query may have the need to search for one of these
special matching characters. In such cases, you can use the “%” and “_” characters as literals in a LIKE predicate by
preceding them with an escape character. The DatabaseMetaData method getSearch-StringEscape returns the default
escape character (which for most DBMSes will be the backslash character “ \”). To override the escape character, use the
following syntax:

{escape 'escape-character'}

The following SQL statement uses the LIKE predicate escape clause to search for any columns that start with the “%”
character:

SELECT * FROM EMPLOYEE WHERE NAME LIKE '\%' {escape '\'}

Outer Joins

JDBC supports the ANSI SQL-92 LEFT OUTER JOIN syntax. The escape clause syntax is

{oj outer-join}

where outer-join is the table-reference LEFT OUTER JOIN {table-reference | outer-join} ON search-condition.

Procedures

A JDBC application can call a procedure in place of an SQL statement. The escape clause used for calling a procedure is

{[?=] call procedure-name[(param[, param]...)]}

where procedure-name specifies the name of a procedure stored on the data source, and param specifies procedure
parameters. A procedure can have zero or more parameters, and may return a value.

The JDBC Interfaces

Now let’s take a look at each of the JDBC interfaces, which are shown in Figure 10.2. We’ll go over the major aspects of
each interface and use code examples from our SimpleText project whenever applicable. You should understand the
JDBC API specification before attempting to create a JDBC driver; this section is meant to enhance the specification, not
to replace it.

Figure 10.2 The JDBC interfaces.

Previous Table of Contents Next

javascript:displayWindow('images/10-02.jpg',493,442)
javascript:displayWindow('images/10-02.jpg',493,442)

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Driver

The Driver class is the entry point for all JDBC drivers. From here, a connection to the database can be made in order to
perform work. This class is intentionally very small; the intent is that JDBC drivers can be pre-registered with the
system, enabling the DriverManager to select an appropriate driver given only a URL (Universal Resource Locator).
The only way to determine which driver can service the given URL is to load the Driver class and let each driver
respond via the acceptsURL method. To keep the amount of time required to find an appropriate driver to a minimum,
each Driver class should be as small as possible so it can be loaded quickly.

Register Thyself

The very first thing that a driver should do is register itself with the DriverManager. The reason is simple: You need to
tell the DriverManager that you exist; otherwise you may not be loaded. The following code illustrates one way of
loading a JDBC driver:

java.sql.Driver d = (java.sql.Driver)
 Class.forName ("jdbc.SimpleText.SimpleTextDriver").newInstance();

Connection con = DriverManager.getConnection("jdbc:SimpleText", "", "");

The class loader will create a new instance of the SimpleText JDBC driver. The application then asks the
DriverManager to create a connection using the given URL. If the SimpleText driver does not register itself, the
DriverManager will not attempt to load it, which will result in a nasty “No capable driver” error.

The best place to register a driver is in the Driver constructor:

public SimpleTextDriver()
 throws SQLException
{

 // Attempt to register this driver with the JDBC DriverManager.
 // If it fails, an exception will be thrown.
 DriverManager.registerDriver(this);

}

URL Processing

As I mentioned a moment ago, the acceptsURL method informs the DriverManager whether a given URL is supported
by the driver. The general format for a JDBC URL is

jdbc:subprotocol:subname

where subprotocol is the particular database connectivity mechanism supported (note that this mechanism may be
supported by multiple drivers) and the subname is defined by the JDBC driver. For example, the format for the JDBC-
ODBC Bridge URL is:

jdbc:odbc:data source name

Thus, if an application requests a JDBC driver to service the URL of

jdbc:odbc:foobar

the only driver that will respond that the URL is supported is the JDBC-ODBC Bridge; all others will ignore the request.

Listing 10.14 shows the acceptsURL method for the SimpleText driver. The SimpleText driver will accept the following
URL syntax:

jdbc:SimpleText

Note that no subname is required; if a subname is provided, it will be ignored.

Listing 10.14 The acceptsURL method.

//--
// acceptsURL - JDBC API
//
// Returns true if the driver thinks that it can open a connection
// to the given URL. Typically, drivers will return true if they
// understand the subprotocol specified in the URL, and false if
// they don't.
//
// url The URL of the database.
//
// Returns true if this driver can connect to the given URL.
//--
public boolean acceptsURL(
 String url)
 throws SQLException
{
 if (traceOn()) {
 trace("@acceptsURL (url=" + url + ")");
 }

 boolean rc = false;
 // Get the subname from the url. If the url is not valid for
 // this driver, a null will be returned.

 if (getSubname(url) != null) {
 rc = true;
 }
 if (traceOn()) {
 trace(" " + rc);
 }
 return rc;
}

//--
// getSubname
// Given a URL, return the subname. Returns null if the protocol is
// not "jdbc" or the subprotocol is not "simpletext."
//--
public String getSubname(
 String url)
{
 String subname = null;
 String protocol = "JDBC";
 String subProtocol = "SIMPLETEXT";

 // Convert to uppercase and trim all leading and trailing
 // blanks.
 url = (url.toUpperCase()).trim();

 // Make sure the protocol is jdbc:
 if (url.startsWith(protocol)) {

 // Strip off the protocol
 url = url.substring (protocol.length());

 // Look for the colon
 if (url.startsWith(":")) {
 url = url.substring(1);

 // Check the subprotocol
 if (url.startsWith(subProtocol)) {

 // Strip off the subprotocol, leaving the subname
 url = url.substring(subProtocol.length());

 // Look for the colon that separates the subname
 // from the subprotocol (or the fact that there
 // is no subprotocol at all).
 if (url.startsWith(":")) {
 subname = url.substring(subProtocol.length());
 }
 else if (url.length() == 0) {
 subname = "";
 }
 }
 }
 }
 return subname;
}

Driver Properties

Connecting to a JDBC driver with only a URL specification is great, but the vast majority of the time, a driver will
require additional information in order to properly connect to a database. The JDBC specification has addressed this
issue with the getPropertyInfo method. Once a Driver has been instantiated, an application can use this method to find
out what required and optional properties can be used to connect to the database. You may be tempted to require the
application to embed properties within the URL subname, but by returning them from the getPropertyInfo method, you
can identify the properties at runtime, giving a much more robust solution. Listing 10.15 shows an application that loads
the SimpleText driver and gets the property information.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Listing 10.15 Using the getPropertyInfo method to identify properties at runtime.

import java.sql.*;

class PropertyTest {

 public static void main(String args[])
 {
 try {

 // Quick way to create a driver object
 java.sql.Driver d = new jdbc.SimpleText.SimpleTextDriver();

 String url = "jdbc:SimpleText";
 // Make sure we have the proper URL
 if (!d.acceptsURL(url)) {
 throw new SQLException("Unknown URL: " + url);
 }

 // Setup a Properties object. This should contain an entry
 // for all known properties to this point. Properties that
 // have already been specified in the Properties object will
 // not be returned by getPropertyInfo.
 java.util.Properties props = new java.util.Properties();

 // Get the property information
 DriverPropertyInfo info[] = d.getPropertyInfo(url, props);

 // Just dump them out
 System.out.println("Number of properties: " + info.length);

 for (int i=0; i < info.length; i++) {
 System.out.println("\nProperty " + (i + 1));
 System.out.println("Name: " + info[i].name);
 System.out.println("Description: " +
 info[i].description);
 System.out.println("Required: " + info[i].required);
 System.out.println("Value: " + info[i].value);
 System.out.println("Choices: " + info[i].choices);
 }

 }
 catch (SQLException ex) {
 System.out.println ("\nSQLException(s) caught\n");

 // Remember that SQLExceptions may be chained together
 while (ex != null) {

 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("Message: " + ex.getMessage());
 System.out.println ("");
 ex = ex.getNextException ();
 }
 }
 }
}

Listing 10.15 produces the following output:

Number of properties: 1

Property 1
Name: Directory
Description: Initial text file directory
Required: false
Value: null
Choices: null

It doesn’t take a lot of imagination to envision an application or applet that gathers the property information and prompts
the user in order to connect to the database. The actual code to implement the getPropertyInfo method for the
SimpleText driver is very simple, as shown in Listing 10.16.

Listing 10.16 Implementing the getPropertyInfo method.

//--
// getPropertyInfo - JDBC API
//
// The getPropertyInfo method is intended to allow a generic GUI tool to
// discover what properties it should prompt a human for in order to get
// enough information to connect to a database. Note that depending on
// the values the human has supplied so far, additional values may become
// necessary, so it may be necessary to iterate though several calls.
// to getPropertyInfo.
//
// url The URL of the database to connect to.
//
// info A proposed list of tag/value pairs that will be sent on
// connect open.
//
// Returns an array of DriverPropertyInfo objects describing possible
// properties. This array may be an empty array if no
// properties are required.
//--

public DriverPropertyInfo[] getPropertyInfo(
 String url,
 java.util.Properties info)
 throws SQLException
{
 DriverPropertyInfo prop[];
 // Only one property required for the SimpleText driver, the
 // directory. Check the property list coming in. If the
 // directory is specified, return an empty list.
 if (info.getProperty("Directory") == null) {

 // Setup the DriverPropertyInfo entry
 prop = new DriverPropertyInfo[1];
 prop[0] = new DriverPropertyInfo("Directory", null);
 prop[0].description = "Initial text file directory";
 prop[0].required = false;

 }
 else {
 // Create an empty list
 prop = new DriverPropertyInfo[0];
 }

 return prop;

}

Let’s Get Connected

Now that we can identify a driver to provide services for a given URL and get a list of the required and optional
parameters necessary, it’s time to establish a connection to the database. The connect method does just that, as shown in
Listing 10.17, by taking a URL and connection property list and attempting to make a connection to the database. The
first thing that connect should do is verify the URL (by making a call to acceptsURL). If the URL is not supported by
the driver, a null value will be returned. This is the only reason that a null value should be returned. Any other errors
during the connect should throw an SQLException.

Listing 10.17 Connecting to the database.

//--
// connect - JDBC API
//
// Try to make a database connection to the given URL.
// The driver should return "null" if it realizes it is the wrong kind
// of driver to connect to the given URL. This will be common, as when
// the JDBC driver manager is asked to connect to a given URL, it passes
// the URL to each loaded driver in turn.
//
// The driver should raise an SQLException if it is the right
// driver to connect to the given URL, but has trouble connecting to
// the database.
//
// The java.util.Properties argument can be used to pass arbitrary
// string tag/value pairs as connection arguments.
// Normally, at least "user" and "password" properties should be
// included in the Properties.
//
// url The URL of the database to connect to.
//
// info a list of arbitrary string tag/value pairs as
// connection arguments; normally, at least a "user" and
// "password" property should be included.
//
// Returns a Connection to the URL.
//--
public Connection connect(
 String url,
 java.util.Properties info)

 throws SQLException
{
 if (traceOn()) {
 trace("@connect (url=" + url + ")");
 }

 // Ensure that we can understand the given URL
 if (!acceptsURL(url)) {
 return null;
 }

 // For typical JDBC drivers, it would be appropriate to check
 // for a secure environment before connecting, and deny access
 // to the driver if it is deemed to be unsecure. For the
 // SimpleText driver, if the environment is not secure, we will
 // turn it into a read-only driver.

 // Create a new SimpleTextConnection object
 SimpleTextConnection con = new SimpleTextConnection();

 // Initialize the new object. This is where all of the
 // connection work is done.
 con.initialize(this, info);

 return con;
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

As you can see, there isn’t a lot going on here for the SimpleText driver; remember that we need to keep the size of the
Driver class implementation as small as possible. To aid in this, all of the code required to perform the database
connection resides in the Connection class, which we’ll discuss next.

Connection

The Connection class represents a session with the data source. From here, you can create Statement objects to execute
SQL statements and gather database statistics. Depending upon the database that you are using, multiple connections
may be allowed for each driver.

For the SimpleText driver, we don’t need to do anything more than actually connect to the database. In fact, there really
isn’t a database at all—just a bunch of text files. For typical database drivers, some type of connection context will be
established, and default information will be set and gathered. During the SimpleText connection initialization, all that we
need to do is check for a read-only condition (which can only occur within untrusted applets) and any properties that are
supplied by the application, as shown in Listing 10.18.

Listing 10.18 SimpleText connection initialization.

public void initialize(
 Driver driver,
 java.util.Properties info)
 throws SQLException
{
 // Save the owning driver object
 ownerDriver = driver;

 // Get the security manager and see if we can write to a file.
 // If no security manager is present, assume that we are a trusted
 // application and have read/write privileges.
 canWrite = false;

 SecurityManager securityManager = System.getSecurityManager ();

 if (securityManager != null) {
 try {
 // Use some arbitrary file to check for file write privileges
 securityManager.checkWrite ("SimpleText_Foo");
 // Flag is set if no exception is thrown
 canWrite = true;
 }

 // If we can't write, an exception is thrown. We'll catch
 // it and do nothing.
 catch (SecurityException ex) {
 }

 }
 else {
 canWrite = true;
 }

 // Set our initial read-only flag
 setReadOnly(!canWrite);

 // Get the directory. It will either be supplied in the property
 // list, or we'll use our current default.
 String s = info.getProperty("Directory");

 if (s == null) {
 s = System.getProperty("user.dir");
 }

 setCatalog(s);

}

Creating Statements

From the Connection object, an application can create three types of Statement objects. The base Statement object is
used for executing SQL statements directly. The PreparedStatement object (which extends Statement) is used for pre-
compiling SQL statements that may contain input parameters. The CallableStatement object (which extends
PreparedStatement) is used to execute stored procedures that may contain both input and output parameters.

For the SimpleText driver, the createStatement method does nothing more than create a new Statement object. For
most database systems, some type of statement context, or handle, will be created. One thing to note whenever an object
is created in a JDBC driver: Save a reference to the owning object because you will need to obtain information (such as
the connection context from within a Statement object) from the owning object.

Consider the createStatement method within the Connection class:

public Statement createStatement()
 throws SQLException
{
 if (traceOn()) {
 trace("Creating new SimpleTextStatement");

 }

 // Create a new Statement object
 SimpleTextStatement stmt = new SimpleTextStatement();

 // Initialize the statement
 stmt.initialize(this);

 return stmt;

}

Now consider the corresponding initialize method in the Statement class:

public void initialize(

 SimpleTextConnection con)
 throws SQLException
{
 // Save the owning connection object
 ownerConnection = con;
}

Which module will you compile first? You can’t compile the Connection class until the Statement class has been
compiled, and you can’t compile the Statement class until the Connection class has been compiled. This is a circular
dependency. Of course, the Java compiler does allow multiple files to be compiled at once, but some build environments
do not support circular dependency. I have solved this problem in the SimpleText driver by defining some simple
interface classes. In this way, the Statement class knows only about the general interface of the Connection class; the
implementation of the interface does not need to be present. Our modified initialize method looks like this:

public void initialize(
 SimpleTextIConnection con)
 throws SQLException
{
 // Save the owning connection object
 ownerConnection = con;
}

Note that the only difference is the introduction of a new class, SimpleTextIConnection, which replaces
SimpleTextConnection. I have chosen to preface the JDBC class name with an “I” to signify an interface. Here’s the
interface class:

public interface SimpleTextIConnection
 extends java.sql.Connection
{
 String[] parseSQL(String sql);
 Hashtable getTables(String directory, String table);
 Hashtable getColumns(String directory, String table);
 String getDirectory(String directory);
}

Note that our interface class extends the JDBC class, and our Connection class implements this new interface. This
allows us to compile the interface first, then the Statement, followed by the Connection. Say good-bye to your circular
dependency woes.

Now, back to the Statement objects. The prepareStatement and prepareCall methods of the Connection object both
require an SQL statement to be provided. This SQL statement should be pre-compiled and stored with the Statement
object. If any errors are present in the SQL statement, an exception should be raised, and the Statement object should
not be created.

Tell Me About Yourself

One of the most powerful aspects of the JDBC specification (which was inherited from X/Open) is the ability for
introspection. This is the process of asking a driver for information about what is supported, how it behaves, and what
type of information exists in the database. The getMetaData method creates a DatabaseMetaData object which
provides us with this wealth of information.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

DatabaseMetaData

At over 130 methods, the DatabaseMetaData class is by far the largest. It supplies information about what is supported
and how things are supported. It also supplies catalog information such as listing tables, columns, indexes, procedures,
and so on. Because the JDBC API specification does an adequate job of explaining the methods contained in this class,
and most of them are quite straightforward, we’ll just take a look at how the SimpleText driver implements the
getTables catalog method. But first, let’s review the basic steps needed to implement each of the catalog methods (that
is, those methods that return a ResultSet):

1. Create the result columns, which includes the column name, type, and other information about each of the
columns. You should perform this step regardless of whether the database supports a given catalog function
(such as stored procedures). I believe that it is much better to return an empty result set with only the column
information than to raise an exception indicating that the database does not support the function. The JDBC
specification does not currently address this issue, so it is open for interpretation.
2. Retrieve the catalog information from the database.
3. Perform any filtering necessary. The application may have specified the return of only a subset of the catalog
information. You may need to filter the information in the JDBC driver if the database system doesn’t.
4. Sort the result data per the JDBC API specification. If you are lucky, the database you are using will sort the
data in the proper sequence. Most likely, it will not. In this case, you will need to ensure that the data is returned
in the proper order.
5. Return a ResultSet containing the requested information.

The SimpleText getTables method will return a list of all of the text files in the catalog (directory) given. If no catalog is
supplied, the default directory is used. Note that the SimpleText driver does not perform all of the steps shown
previously; it does not provide any filtering, nor does it sort the data in the proper sequence. You are more than welcome
to add this functionality. In fact, I encourage it. One note about column information: I prefer to use a Hashtable
containing the column number as the key, and a class containing all of the information about the column as the data
value. So, for all ResultSets that are generated, I create a Hashtable of column information that is then used by the
ResultSet object and the ResultSetMetaData object to describe each column. Listing 10.19 shows the
SimpleTextColumn class that is used to hold this information for each column.

Listing 10.19 The SimpleTextColumn class.

package jdbc.SimpleText;

public class SimpleTextColumn
 extends Object
{
//--
 // Constructor
//--
 public SimpleTextColumn(
 String name,
 int type,
 int precision)

 {
 this.name = name;
 this.type = type;
 this.precision = precision;
 }

 public SimpleTextColumn(
 String name,
 int type)
 {
 this.name = name;
 this.type = type;
 this.precision = 0;
 }
 public SimpleTextColumn(
 String name)
 {
 this.name = name;
 this.type = 0;
 this.precision = 0;
 }

 public String name;
 public int type;
 public int precision;
 public boolean searchable;
 public int colNo;
 public int displaySize;
 public String typeName;
}

Note that I have used several constructors to set up various default information, and that all of the attributes are public.
To follow object-oriented design, I should have provided a get and set method to encapsulate each attribute, but I chose
to let each consumer of this object access them directly. Listing 10.20 shows the code for the getTables method.

Listing 10.20 The getTables method.

//--
// getTables - JDBC API
// Get a description of tables available in a catalog
//
// Only table descriptions matching the catalog, schema, table
// name and type criteria are returned. They are ordered by
// TABLE_TYPE, TABLE_SCHEM, and TABLE_NAME.
//
// Each table description has the following columns:
//
// (1) TABLE_CAT String => table catalog (may be null)
// (2) TABLE_SCHEM String => table schema (may be null)
// (3) TABLE_NAME String => table name
// (4) TABLE_TYPE String => table type
// Typical types are "TABLE", "VIEW", "SYSTEM TABLE",
// "GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS", "SYNONYM"
// (5) REMARKS String => explanatory comment on the table
//
// Note: Some databases may not return information for
// all tables.

//
// catalog a catalog name; "" retrieves those without a
// catalog.
// schemaPattern a schema name pattern; "" retrieves those
// without a schema.
// tableNamePattern a table name pattern.
// types a list of table types to include; null returns all
// types.
//
// Returns a ResultSet. Each row is a table description.
//--
public ResultSet getTables(
 String catalog,
 String schemaPattern,
 String tableNamePattern,
 String types[])
 throws SQLException
{
 if (traceOn()) {
 trace("@getTables(" + catalog + ", " + schemaPattern +
 ", " + tableNamePattern + ")");
 }

 // Create a statement object
 SimpleTextStatement stmt =
 (SimpleTextStatement) ownerConnection.createStatement();

 // Create a Hashtable for all of the columns
 Hashtable columns = new Hashtable();

 add(columns, 1, "TABLE_CAT", Types.VARCHAR);
 add(columns, 2, "TABLE_SCHEM", Types.VARCHAR);
 add(columns, 3, "TABLE_NAME", Types.VARCHAR);
 add(columns, 4, "TABLE_TYPE", Types.VARCHAR);
 add(columns, 5, "REMARKS", Types.VARCHAR);

 // Create an empty Hashtable for the rows
 Hashtable rows = new Hashtable();

 // If any of the parameters will return an empty result set, do so
 boolean willBeEmpty = false;

 // If table types are specified, make sure that 'TABLE' is
 // included. If not, no rows will be returned.

 if (types != null) {
 willBeEmpty = true;
 for (int ii = 0; ii < types.length; ii++) {
 if (types[ii].equalsIgnoreCase("TABLE")) {
 willBeEmpty = false;
 break;
 }
 }
 }
 if (!willBeEmpty) {
 // Get a Hashtable with all tables
 Hashtable tables = ownerConnection.getTables(
 ownerConnection.getDirectory(catalog),
 tableNamePattern);

 Hashtable singleRow;
 SimpleTextTable table;

 // Create a row for each table in the Hashtable
 for (int i = 0; i < tables.size(); i++) {
 table = (SimpleTextTable) tables.get(new Integer(i));

 // Create a new Hashtable for a single row
 singleRow = new Hashtable();

 // Build the row
 singleRow.put(new Integer(1), new CommonValue(table.dir));
 singleRow.put(new Integer(3), new CommonValue(table.name));
 singleRow.put(new Integer(4), new CommonValue("TABLE"));

 // Add it to the row list
 rows.put(new Integer(i + 1), singleRow);
 }
 }

 // Create the ResultSet object and return it
 SimpleTextResultSet rs = new SimpleTextResultSet();

 rs.initialize(stmt, columns, rows);

 return rs;
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Let’s take a closer look at what’s going on here. The first thing we do is create a Statement object to “fake out” the
ResultSet object that we will be creating to return back to the application. The ResultSet object is dependent upon a
Statement object, so we’ll give it one. The next thing we do is create all of the column information. Note that all of the
required columns are given in the JDBC API specification. The add method simply adds a SimpleTextColumn object to
the Hashtable of columns:

protected void add(
 Hashtable h,
 int col,
 String name,
 int type)
{
 h.put(new Integer(col), new SimpleTextColumn(name,type));
}

Next, we create another Hashtable to hold all of the data for all of the catalog rows. The Hashtable contains an entry for
each row of data. The entry contains the key, which is the row number, and the data value, which is yet another
Hashtable whose key is the column number and whose data value is a CommonValue object containing the actual data.
Remember that the CommonValue class provides us with the mechanism to store data and coerce it as requested by the
application. If a column is null, we simply cannot store any information in the Hashtable for that column number.

After some sanity checking to ensure that we really need to look for the catalog information, we get a list of all of the
tables. The getTables method in the Connection class provides us with a list of all of the SimpleText data files:

public Hashtable getTables(
 String dir,
 String table)
{
 Hashtable list = new Hashtable();

 // Create a FilenameFilter object. This object will only allow
 // files with the .SDF extension to be seen.
 FilenameFilter filter = new SimpleTextEndsWith(
 SimpleTextDefine.DATA_FILE_EXT);

 File file = new File(dir);

 if (file.isDirectory()) {

 // List all of the files in the directory with the .SDF extension
 String entries[] = file.list(filter);
 SimpleTextTable tableEntry;

 // Create a SimpleTextTable entry for each, and put in
 // the Hashtable.

 for (int i = 0; i < entries.length; i++) {

 // A complete driver needs to further filter the table
 // name here.
 tableEntry = new SimpleTextTable(dir, entries[i]);
 list.put(new Integer(i), tableEntry);

 }
 }

 return list;
}

Again, I use a Hashtable for each table (or file in our case) that is found. By now, you will have realized that I really
like using Hashtables; they can grow in size dynamically and provide quick access to data. And because a Hashtable
stores data as an abstract Object, I can store whatever is necessary. In this case, each Hashtable entry for a table
contains a SimpleTextTable object:

public class SimpleTextTable
 extends Object
{
//--
 // Constructor
//--
 public SimpleTextTable(
 String dir,
 String file)
 {
 this.dir = dir;
 this.file = file;

 // If the filename has the .SDF extension, get rid of it
 if (file.endsWith(SimpleTextDefine.DATA_FILE_EXT)) {
 name = file.substring(0, file.length() -
 SimpleTextDefine.DATA_FILE_EXT.length());
 }
 else {
 name = file;
 }
 }

 public String dir;
 public String file;
 public String name;
}

Notice that the constructor strips the file extension from the given file name, creating the table name.

Now, back to the getTables method for DatabaseMetaData. Once a list of all of the tables has been retrieved, the
Hashtable used for storing all of the rows is generated. If you were to add additional filtering, this is the place that it
should be done. Finally, a new ResultSet object is created and initialized. One of the constructors for the ResultSet class
accepts two Hashtables: one for the column information (SimpleTextColumn objects), and the other for row data
(CommonValue objects). We’ll see later how these are handled by the ResultSet class. For now, just note that it can
handle both in-memory results (in the form of a Hashtable) and results read directly from the data file.

Statement

The Statement class contains methods to execute SQL statements directly against the database and to obtain the results.
A Statement object is created using the createStatement method from the Connection object. Of note in Listing 10.21
are the three methods used to execute SQL statements: executeUpdate, executeQuery, and execute. In actuality, you
only need to worry about implementing the execute method; the other methods use it to perform their work. In fact, the
code provided in the SimpleText driver should be identical for all JDBC drivers.

Listing 10.21 Executing SQL statements.

//--
// executeQuery - JDBC API
// Execute an SQL statement that returns a single ResultSet.
//
// sql Typically this is a static SQL SELECT statement.
//
// Returns the table of data produced by the SQL statement.
//--
public ResultSet executeQuery(
 String sql)
 throws SQLException
{
 if (traceOn()) {
 trace("@executeQuery(" + sql + ")");
 }

 java.sql.ResultSet rs = null;

 // Execute the query. If execute returns true, then a result set
 // exists.
 if (execute(sql)) {
 rs = getResultSet();
 }
 else { // If the statement does not create a ResultSet, the
 // specification indicates that an SQLException should
 // be raised.
 throw new SQLException("Statement did not create a ResultSet");
 }
 return rs;
}

//--
// executeUpdate - JDBC API
// Execute an SQL INSERT, UPDATE, or DELETE statement. In addition,
// SQL statements that return nothing, such as SQL DDL statements,
// can be executed.
//
// sql an SQL INSERT, UPDATE, or DELETE statement, or an SQL
// statement that returns nothing.
//
// Returns either the row count for INSERT, UPDATE, or DELETE; or 0
// for SQL statements that return nothing.
//--
public int executeUpdate(
 String sql)
 throws SQLException
{
 if (traceOn()) {
 trace("@executeUpdate(" + sql + ")");

 }
 int count = -1;

 // Execute the query. If execute returns false, then an update
 // count exists.
 if (execute(sql) == false) {
 count = getUpdateCount();
 }
 else {
 // If the statement does not create an update count, the
 // specification indicates that an SQLException should be raised.
 throw new SQLException("Statement did not create an update
 count");
 }

 return count;
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

As you can see, executeQuery and executeUpdate are simply helper methods for an application; they are built
completely upon other methods contained within the class. The execute method accepts an SQL statement as its only
parameter, and will be implemented differently, depending upon the underlying database system. For the SimpleText
driver, the SQL statement will be parsed, prepared, and executed. Note that parameter markers are not allowed when
executing an SQL statement directly. If the SQL statement created results containing columnar data, execute will return
true; if the statement created a count of rows affected, execute will return false. If execute returns true, the application
then uses getResultSet to return the current result information; otherwise, getUpdateCount will return the number of
rows affected.

Warnings

As opposed to SQLException, which indicates a critical error, an SQLWarning can be issued to provide additional
information to the application. Even though SQLWarning is derived from SQLException, warnings are not thrown.
Instead, if a warning is issued, it is placed on a warning stack with the Statement object (the same holds true for the
Connection and ResultSet objects). The application must then check for warnings after every operation using the
getWarnings method. At first, this may seem a bit cumbersome, but when you consider the alternative of wrapping try...
catch statements around each operation, this seems like a better solution. Note also that warnings can be chained
together, just like SQLExceptions (for more information on chaining, see the JDBC Exception Types section earlier in
this chapter).

Two (Or More) For The Price Of One

Some database systems allow SQL statements that return multiple results (columnar data or an update count) to be
executed. If you are unfortunate enough to be developing a JDBC driver using one of these database systems, take heart.
The JDBC specification does address this issue. The getMoreResults method is intended to move through the results.
Figuring out when you have reached the end of the results, however, is a bit convoluted. To do so, you first call
getMoreResults. If it returns true, there is another ResultSet present and you can use getResultSet to retrieve it. If
getMoreResults returns false, you have either reached the end of the results, or an update count exists; you must call
getUpdateCount to determine which situation exists. If getUpdateCount returns -1, you have reached the end of the
results; otherwise, it will return the number of rows affected by the statement.

The SimpleText driver does not support multiple result sets, so I don’t have any example code to present to you. The
only DBMS that I am aware of that supports this is Sybase. Because there are already multiple JDBC drivers available
for Sybase (one of which I have developed), I doubt you will have to be concerned with getMoreResults. Consider
yourself lucky.

PreparedStatement

The PreparedStatement is used for pre-compiling an SQL statement, typically in conjunction with parameters, and can
be efficiently executed multiple times with just a change in a parameter value; the SQL statement does not have to be
parsed and compiled each time. Because the PreparedStatement class extends the Statement class, you will have
already implemented a majority of the methods. The executeQuery, executeUpdate, and execute methods are very
similar to the Statement methods of the same name, but they do not take an SQL statement as a parameter. The SQL
statement for the PreparedStatement was provided when the object was created with the prepareStatement method

from the Connection object. One danger to note here: Because PreparedStatement is derived from the Statement
class, all of the methods in Statement are also in PreparedStatement. The three execute methods from the Statement
class that accept SQL statements are not valid for the PreparedStatement class. To prevent an application from
invoking these methods, the driver should also implement them in PreparedStatement, as shown here:

// The overloaded executeQuery on the Statement object (which we
// extend) is not valid for PreparedStatement or CallableStatement
// objects.
public ResultSet executeQuery(
 String sql)
 throws SQLException
{
 throw new SQLException("Method is not valid");
}

// The overloaded executeUpdate on the Statement object (which we
// extend) is not valid for PreparedStatement or CallableStatement
// objects.
public int executeUpdate(
 String sql)
 throws SQLException
{
 throw new SQLException("Method is not valid");
}

// The overloaded execute on the Statement object (which we
// extend) is not valid for PreparedStatement or CallableStatement
// objects.
public boolean execute(
 String sql)
 throws SQLException
{
 throw new SQLException("Method is not valid");
}

Setting Parameter Values

The PreparedStatement class introduces a series of “set” methods to set the value of a specified parameter. Take the
following SQL statement:

INSERT INTO FOO VALUES (?, ?, ?)

If this statement was used in creating a PreparedStatement object, you would need to set the value of each parameter
before executing it. In the SimpleText driver, parameter values are kept in a Hashtable. The Hashtable contains the
parameter number as the key, and a CommonValue object as the data object. By using a CommonValue object, the
application can set the parameter using any one of the supported data types, and we can coerce the data into the format
that we need in order to bind the parameter. Here’s the code for the setString method:

public void setString(
 int parameterIndex,
 String x)
 throws SQLException
{
 // Validate the parameter index
 verify(parameterIndex);

 // Put the parameter into the boundParams Hashtable
 boundParams.put(new Integer(parameterIndex), x);
}

The verify method validates that the given parameter index is valid for the current prepared statement, and also clears
any previously bound value for that parameter index:

protected void verify(
 int parameterIndex)
 throws SQLException
{

 clearWarnings();

 // The paramCount was set when the statement was prepared
 if ((parameterIndex <= 0) ||
 (parameterIndex > paramCount)) {
 throw new SQLException("Invalid parameter number: " +
 parameterIndex);
 }

 // If the parameter has already been set, clear it
 if (boundParams.get(new Integer(parameterIndex)) != null) {
 boundParams.remove(new Integer(parameterIndex));
 }
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Because the CommonValue class does not yet support all of the JDBC data types, not all of the set methods have been
implemented in the SimpleText driver. You can see, however, how easy it would be to fully implement these methods
once CommonValue supported all of the necessary data coercion.

What Is It?

Another way to set parameter values is by using the setObject method. This method can easily be built upon the other
set methods. Of interest here is the ability to set an Object without giving the JDBC driver the type of driver being set.
The SimpleText driver implements a simple method to determine the type of object, given only the object itself:

protected int getObjectType(
 Object x)
 throws SQLException
{

 // Determine the data type of the Object by attempting to cast
 // the object. An exception will be thrown if an invalid casting
 // is attempted.
 try {
 if ((String) x != null) {
 return Types.VARCHAR;
 }
 }
 catch (Exception ex) {
 }

 try {
 if ((Integer) x != null) {
 return Types.INTEGER;
 }
 }
 catch (Exception ex) {
 }

 try {
 if ((byte[]) x != null) {
 return Types.VARBINARY;
 }
 }
 catch (Exception ex) {
 }

 throw new SQLException("Unknown object type");
}

Setting InputStreams

As we’ll see with ResultSet later, using InputStreams is the recommended way to work with long data (blobs). There
are two ways to treat InputStreams when using them as input parameters: Read the entire InputStream when the
parameter is set and treat it as a large data object, or defer the read until the statement is executed and read it in chunks at
a time. The latter approach is the preferred method because the contents of an InputStream may be too large to fit into
memory. Here’s what the SimpleText driver does with InputStreams:

public void setBinaryStream(
 int parameterIndex,
 java.io.InputStream x,
 int length)
 throws SQLException
{

 // Validate the parameter index
 verify(parameterIndex);

 // Read in the entire InputStream all at once. A more optimal
 // way of handling this would be to defer the read until execute
 // time, and only read in chunks at a time.
 byte b[] = new byte[length];

 try {
 x.read(b);
 }
 catch (Exception ex) {
 throw new SQLException("Unable to read InputStream: " +
 ex.getMessage());
 }

 // Set the data as a byte array
 setBytes(parameterIndex, b);
}

But wait, this isn’t the preferred way! You are correct, it isn’t. The SimpleText driver simply reads in the entire
InputStream and then sets the parameter as a byte array. I’ll leave it up to you to modify the driver to defer the read
until execute time.

ResultSet

The ResultSet class provides methods to access data generated by a table query. This includes a series of get methods
which retrieve data in any one of the JDBC SQL type formats, either by column number or by column name. When the
issue of providing get methods was first introduced by JavaSoft, some disgruntled programmers argued that they were
not necessary; if an application wanted to get data in this manner, then the application could provide a routine to cross
reference the column name to a column number. Unfortunately (in my opinion), JavaSoft chose to keep these methods in
the API and provide the implementation of the cross reference method in an appendix. Because it is part of the API, all
drivers must implement the methods. Implementing the methods is not all that difficult, but it is tedious and adds
overhead to the driver. The driver simply takes the column name that is given, gets the corresponding column number
for the column name, and invokes the same get method using the column number:

public String getString(
 String columnName)
 throws SQLException
{
 return getString(findColumn(columnName));

}

And here’s the findColumn routine:

public int findColumn(
 String columnName)
 throws SQLException
{
 // Make a mapping cache if we don't already have one
 if (md == null) {
 md = getMetaData();
 s2c = new Hashtable();
 }
 // Look for the mapping in our cache
 Integer x = (Integer) s2c.get(columnName);

 if (x != null) {
 return (x.intValue());
 }

 // OK, we'll have to use metadata
 for (int i = 1; i < md.getColumnCount(); i++) {
 if (md.getColumnName(i).equalsIgnoreCase(columnName)) {

 // Success! Add an entry to the cache
 s2c.put(columnName, new Integer(i));
 return (i);
 }
 }

 throw new SQLException("Column name not found: " + columnName,
 "S0022");
}

This method uses a Hashtable to cache the column number and column names.

It’s Your Way, Right Away

An application can request column data in any one of the supported JDBC data types. As we have discussed before, the
driver should coerce the data into the proper format. The SimpleText driver accomplishes this by using a
CommonValue object for all data values. Therefore, the data can be served in any format, stored as a CommonValue
object, and the application can request it in any other supported format. Let’s take a look at the getString method:

public String getString(
 int columnIndex)
 throws SQLException
{
 // Verify the column and get the absolute column number for the
 // table.
 int colNo = verify(columnIndex);

 String s = null;

 if (inMemoryRows != null) {
 s = (getColumn(rowNum, columnIndex)).getString();
 }

 else {
 CommonValue value = getValue(colNo);

 if (value != null) {
 s = value.getString();
 }
 }
 if (s == null) {
 lastNull = true;
 }

 return s;
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

The method starts out by verifying that the given column number is valid. If it is not, an exception is thrown. Some other
types of initialization are also performed. Remember that all ResultSet objects are provided with a Hashtable of
SimpleTextColumn objects describing each column:

protected int verify(
 int column)
 throws SQLException
{
 clearWarnings();
 lastNull = false;

 SimpleTextColumn col = (SimpleTextColumn) inMemoryColumns.get(
 new Integer(column));

 if (col == null) {
 throw new SQLException("Invalid column number: " + column);
 }
 return col.colNo;
}

Next, if the row data is stored in an in-memory Hashtable (as with the DatabaseMetaData catalog methods), the data is
retrieved from the Hashtable. Otherwise, the driver gets the data from the data file. In both instances, the data is
retrieved as a CommonValue object, and the getString method is used to format the data into the requested data type.
Null values are handled specially; the JDBC API has a wasNull method that will return true if the last column that was
retrieved was null:

public boolean wasNull()
 throws SQLException
{
 return lastNull;
}

The SimpleText driver also supports InputStreams. In our case, the SimpleTextInputStream class is just a simple
wrapper around a CommonValue object. Thus, if an application requests the data for a column as an InputStream, the
SimpleText driver will get the data as a CommonValue object (as it always does) and create an InputStream that
fetches the data from the CommonValue.

The getMetaData method returns a ResultSetMetaData object, which is our last class to cover.

ResultSetMetaData

The ResultSetMetaData class provides methods that describe each one of the columns in a result set. This includes the
column count, column attributes, and the column name. ResultSetMetaData will typically be the smallest class in a
JDBC driver, and is usually very straightforward to implement. For the SimpleText driver, all of the necessary

information is retrieved from the Hashtable of column information that is required for all result sets. Thus, to retrieve
the column name:

public String getColumnLabel(
 int column)
 throws SQLException
{
 // Use the column name
 return getColumnName(column);
}

protected SimpleTextColumn getColumn(
 int col)
 throws SQLException
{
 SimpleTextColumn column = (SimpleTextColumn)
 inMemoryColumns.get(new Integer(col));

 if (column == null) {
 throw new SQLException("Invalid column number: " + col);
 }

 return column;
}

Summary

We have covered a lot of material in this chapter, including the JDBC DriverManager and the services that it provides,
implementing Java interfaces, creating native JDBC drivers, tracing, data coercion, escape sequence processing, and
each one of the major JDBC interfaces. This information, in conjunction with the SimpleText driver, should help you to
create your own JDBC driver without too much difficulty.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 11
Internet Database Issues: Middleware

The JDBC specification says that the JDBC API should serve as a platform for building so-called “three-tier” client/
server systems, often called middleware. As you might imagine, these systems have three basic components: the client,
the server, and the application server. Figure 11.1 shows the basic structure of a three-tier system.

Figure 11.1 Three-tier system structure.

In this chapter, I’ll provide you with the code necessary to implement a simple application server of your own. We’ll
also take a look at building a client for our home-grown application server. But before we get to the coding, we first need
to discuss why we would want to go to such lengths to build a three-tier system instead of allowing direct database
access.

Several middleware solutions based on the JDBC are already available, and although you may ultimately decide to buy
one from a vendor instead of coding one yourself, I feel that it’s important to learn the issues involved with middleware.
Knowing the advantages and disadvantages that go along with inserting a middle tier to a system can help you decide if
you need one.

Connectivity Issues Involved With Database Access

Let’s begin by examining some issues of database scalabilty that you are likely to encounter. The Internet and large
intranet scenarios pose interesting dilemmas for databases that serve a large number of users:

• Concurrency—Suppose a user receives some data from the database server, and while the user is looking at
it, the data on the database server is changed in some way. For the user to see the updated material, both the
database server and the client need to be able to handle the change. While some database servers can handle the
necessary coding (and the increased load on the server) for updating, some cannot.
• Legacy Databases—Some legacy database systems may not support simultaneous connections, or even
direct connections using TCP/IP.
• Security—Most database servers do not support encrypted connections, which means that certain
transactions, such as the login using a password, will not be secure. Over the Internet, such a lack of security is
a major hole.
• Simultaneous Connections—Database servers have a limit on the number of active connections.
Unfortunately, exceeding this predefined limit on the Internet is easy.

javascript:displayWindow('images/11-01.jpg',405,383)
javascript:displayWindow('images/11-01.jpg',405,383)

Advantages Of Middleware

Let’s now have a look at how a middle tier can address the issues presented in the previous section, while adding extra
capability to a client/server system:

• Concurrency—You can program the application server to handle concurrency issues, off-loading the task
from the database server. Of course, you would also need to program the clients to respond to update
broadcasts. You can implement concurrency checking entirely on the application server, if necessary. This
process involves checking to see if a specific data object requested by a client has changed since the current
request, asking the client to update the previously retrieved data, and alerting the user.
• Legacy Databases—Databases that operate on older network protocols can be piped through an application
server running on a machine that can communicate with the database server, as well as with remote Internet
clients. A JDBC driver that can speak to a non-networked legacy database can be used to provide Internet
access to its data, even using an ODBC driver, courtesy of the JDBC-ODBC Bridge. The application server can
reside on the same machine as the non-networked database, and provide network access using a client that
communicates to the application server.
• Security—You can program/obtain an application server that supports a secure connection to the remote
clients. If you keep the local connection between the database server and the application server restricted to
each other, you can create a fairly secure system. In this type of setup, your database server can only talk to the
application server, so the threat of someone connecting directly to the database server and causing damage is
greatly limited. However, you must be sure that there are no loopholes in your application server.
• Simultaneous Connections—The application server, in theory, can maintain only one active connection to
the database server. On the other side, it can allow as many connections to itself from clients as it wants. In
practice, however, significant speed problems will arise as more users attempt to use one connection. Managing
a number of fixed connections to the database server is possible, though, so this speed degradation is not
noticeable.

Disadvantages Of Middleware

Of course, middleware is not without its own pitfalls. Let’s take a brief look at some disadvantages you may encounter if
you choose to implement an application server:

• Speed—As I’ve hinted, speed is the main drawback to running an application server, especially if the
application server is running on a slow machine. If the application server does not run on the same machine as
the database server, there may be additional speed loss as the two communicate with each other.
• Security—If your application server is not properly secured, additional security holes could easily crop up.
For example, a rogue user could break into the application server, then break into the database server using the
application server’s functions. Again, you must take great care to make sure that unauthorized access to the
database server via the application server is not possible.
• Reliability—Adding an application server to the system introduces potential problems that may not be
present in a two-tier system, where the clients are communicating directly with the database server.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

The Application Server: A Complete Example With Code

I’ve shown you the advantages and disadvantages of implementing an application server; it’s up to you to weigh these
points and other relating factors when it comes time to make a decision on your own system. Let’s look at a fully
functional application server. The application server shown in Listing 11.1 uses JDBC to interact with data sources, so
any JDBC driver could be used. I used the mSQL driver in this example, but you can easily modify the code to use the
JDBC-ODBC Bridge, and then use the ODBC drivers for Access 95 to allow applets to query an Access 95 database.
(This is an interesting scenario, because Access does not provide direct network connectivity in the form of a true
“database server.”) This application server is truly multithreaded—it spawns each client connection into its own thread.
Each client connection also make a new instance of the JDBC driver, so each client has its own virtual connection to the
data source via the application server.

The application server only allows two real functions:

• Connect to a predefined data source
• Make Select queries against the data source

The query is processed against the data source, and the result is piped directly back to the client in pre-formatted text.
You can easily extend this approach so that a ResultSet can be encapsulated and sent unprocessed to the client by using
the upcoming remote objects specification from JavaSoft. For the purposes of this example, I won’t make it too elaborate
and instead just send over the results in a delimited String format. The client is not a true JDBC client in that it does not
implement a JDBC driver; it uses the two functions defined earlier to make queries. The results can be parsed by the
applet calling the client, but for the purpose of this simple example, we’ll just show them to the user (you’ll see this
when we show the code for the client).

You can find the source file for Listing 11.1 on the CD-ROM or on The Coriolis Group’s Web site at http://www.coriolis.
com/jdbc-book. Figure 11.2 shows the application server’s window.

Figure 11.2 The application server console.

Listing 11.1 Application server.

import java.awt.List;
import java.awt.Frame;
import java.net.*;
import java.io.*;
import java.util.*;
import java.sql.*;
// Remember that we are using the JDBC driver on the _server_ to connect

http://www.coriolis.com/jdbc-book/
http://www.coriolis.com/jdbc-book/
javascript:displayWindow('images/11-02.jpg',400,197)
javascript:displayWindow('images/11-02.jpg',400,197)

// to a data source, so we need the JDBC API classes!

public class ApplicationServer extends Thread {
 public final static int DEFAULT_PORT = 6001;
 protected int port;
 protected ServerSocket server_port;
 protected ThreadGroup CurrentConnections;
 protected List connection_list;
 protected Vector connections;
 protected ConnectionWatcher watcher;
 public Frame f;
 // We plan on showing the connections to the server, so we need a frame

 // Exit with an error message if there's an exception
 public static void fail(Exception e, String msg) {
 System.err.println(msg + ": " + e);
 System.exit(1);
 }

 // Create a ServerSocket to listen for connections and start its thread.
 public ApplicationServer(int port) {
 // Create our server thread with a name
 super("Server");
 if (port == 0) port = DEFAULT_PORT;
 this.port = port;
 try { server_port = new ServerSocket(port); }
 catch (IOException e) {fail(e, "Exception creating server socket");}
 // Create a threadgroup for our connections
 CurrentConnections = new ThreadGroup("Server Connections");

 // Create a window to display our connections in
 f = new Frame("Server Status");
 connection_list = new List();
 f.add("Center", connection_list);
 f.resize(400, 200);
 f.show();

 // Initialize a vector to store our connections in
 connections = new Vector();
 // Create a ConnectionWatcher thread to wait for other threads to die
 // and to perform clean-up.
 watcher = new ConnectionWatcher(this);
 // Start the server listening for connections
 this.start();
 }

 public void run() {
 // this is where new connections are listened for
 try {
 while(true) {
 Socket client_socket = server_port.accept();
 ServerConnection c = new ServerConnection(client_socket,
 CurrentConnections, 3, watcher);
 // Prevent simultaneous access
 synchronized (connections) {
 connections.addElement(c);
 connection_list.addItem(c.getInfo());
 }
 }

 }
 catch (IOException e) {fail(e, "Exception while listening for
 connections");}
 f.dispose();
 System.exit(0);
 }

 // Start the server up, get a port number if specified
 public static void main(String[] args) {
 int port = 0;
 if (args.length == 1) {
 try {port = Integer.parseInt(args[0]);}
 catch (NumberFormatException e) {port = 0;}
 }
 new ApplicationServer(port);
 }
}

// This class is the thread that handles all communication with a client.
// It also notifies the ConnectionWatcher when the connection is dropped.
class ServerConnection extends Thread {
 static int numberOfConnections = 0;
 protected Socket client;
 protected ConnectionWatcher watcher;
 protected DataInputStream in;
 protected PrintStream out;
 Connection con;

 // Initialize the streams and start the thread
 public ServerConnection(Socket client_socket, ThreadGroup
 CurrentConnections,
 int priority, ConnectionWatcher watcher) {
 // Give the thread a group, a name, and a priority
 super(CurrentConnections, "Connection number" +
 numberOfConnections++);
 this.setPriority(priority);

 // We'll need this data later, so store it in local objects
 client = client_socket;
 this.watcher = watcher;

 // Create the streams for talking with client
 try {
 in = new DataInputStream(client.getInputStream());
 out = new PrintStream(client.getOutputStream());
 }
 catch (IOException e) {
 try {client.close();} catch (IOException e2) {
 System.err.println("Exception while getting socket streams: "
 + e); return;}
 }
 // And start the thread up
 this.start();
 }

// This is where the real "functionality" of the server takes place.
// This is where the input and output is done to the client.
 public void run() {

 String inline;
 try {
 // Loop forever, or until the connection is broken!
 while(true) {
 // Read in a line
 inline = in.readLine();
 if (inline == null) break;
 // If the client has broken connection, get out of
 // the loop

 inline=inline.trim();
 // Get rid of leading and trailing whitespace

 // These are the two functions implemented, connect
 // and query. The client sends one of these commands,
 // and if it's query ("S") then the server expects the
 // next line sent to be the query.
 switch(inline.toCharArray()[0]) {
 case `L': out.println("Connected to datasource");
 out.println("DONE");
 ConnectToDatasource("jdbc:msql://elanor:1112/bcancer",
 "prpatel");
 // See this method next... it starts up the driver and
 // connects to the data source.
 break;
 case `S': out.println("Run query: send SQL Query");
 out.println("DONE");
 inline = in.readLine();
 inline=inline.trim();
 // This line gets the query sent here, runs its against
 // the connected data source, and returns the results in
 // formatted text
 out.print(RunQuery(inline));
 // RunQuery is the method that runs the passed in
 // query using the initialized driver and connection.
 out.println("DONE");
 break;
 default: out.println("ERROR - Invalid Request");
 out.println("DONE");
 }

 out.flush();
 }
 }
 catch (IOException e) {}

 // If the client broke off the connection, notify the
 // ConnectionWatcher
 // (watcher) which will close the connection.
 finally {
 try {client.close();}
 catch (IOException e2) {
 synchronized (watcher) {watcher.notify();}
 } }
 }

// This sends info back to the connection starter so that it can
// be displayed in the frame.
 public String getInfo() {

 return ("Client connected from:"+client.getInetAddress().
 getHostName());
 }

 // DB specific stuff follows
private void ConnectToDatasource(String url, String Name) {
try {
 new imaginary.sql.iMsqlDriver();
 con = DriverManager.getConnection(url, Name, "");
// Create an instance of the driver and connect to the DB server
 }
 catch(Exception e) {
 e.printStackTrace(); System.out.println(e.getMessage());
 }
}

private String RunQuery(String QueryLine) {
// Run the passed in query and return the Stringified results
 String Output="";
 int columns;
 int pos;
 try {

 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(QueryLine);
 columns=(rs.getMetaData()).getColumnCount();

 while(rs.next()) {

 for(pos=1; pos<=columns; pos++) {

 Output+=rs.getObject(pos)+" ";
 }
 Output+="\n";

 }
 stmt.close();
 // con.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 Output=e.getMessage();
 }
 return Output;
 }
 // End DB specific stuff

} // End class Connection

// This class cleans up closed connections and updates the displayed
// list of connected clients.
class ConnectionWatcher extends Thread {
 protected ApplicationServer server;
 protected ConnectionWatcher(ApplicationServer s) {
 super(s.CurrentConnections, "ConnectionWatcher");
 server = s;
 this.start();
 }

 public synchronized void run() {
 while(true) {
 try {this.wait(10000);}
 catch (InterruptedException e){
 System.out.println("Caught an Interrupted Exception");
 }
 // Prevent simultaneous access
 synchronized(server.connections) {
 // Loop through the connections
 for(int i = 0; i < server.connections.size(); i++) {
 ServerConnection c;
 c = (ServerConnection)server.connections.elementAt(i);
 // If the connection thread isn't alive anymore,
 // remove it from the Vector and List.
 if (!c.isAlive()) {
 server.connections.removeElementAt(i);
 server.connection_list.delItem(i);
 i--;
 }
 }
 }
 }
 }
 }

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

The Client: A Complete Example With Code

Now that we have the server code, let’s look at the client class, which is shown in Listing 11.2. This client class is not
self-standing; we’ll need an applet to call this class and make use of the methods we define in it. The code for a sample
applet that calls this client class is shown in Listing 11.3. Note that the client is specially coded to communicate with the
application server in Listing 11.1, and that it does not require the Web browser it is run on to have the JDBC API classes.
For our simple example, we don’t need to implement all of the functionality that is demanded of a JDBC driver, so I
didn’t write one; a JDBC driver that can talk to our application server would not be difficult to write at this point,
however, because we have a simple “command set” and simple functionality. Figure 11.3 shows the client applet in
Listing 11.3, which uses the Dbclient class.

Figure 11.3 Sample applet that uses our client.

Listing 11.2 Client class.

import java.io.*;
import java.net.*;
import java.applet.*;

public class DBClient {
public Socket socket;
public PrintStream out;
public String Name;
public Reader reader;

public DBClient (String ServerName, int ServerPort) {
 try { socket = new Socket(ServerName, ServerPort);
 // We put the reading of the inputStream from the application
 // server in its own thread, Reader.
 reader = new Reader(this);
 out = new PrintStream(socket.getOutputStream());
 }
 catch (IOException e) {System.err.println(e);}
 }
public String ProcessCommand(String InLine) {
System.out.println("FROM DBCLIENT:"+InLine);
 out.println(InLine);

javascript:displayWindow('images/11-03.jpg',460,430)
javascript:displayWindow('images/11-03.jpg',460,430)

 out.flush();
// tell the reader we've sent some data/command
 synchronized(reader){reader.notify();reader.notifyOn=false;}
 while(true) {
 // We have to wait until the Reader has finished reading, so we set
 // this notifyOn flag in the reader when it has finished reading.
 if (reader.notifyOn) {break;}
 }

// Return the results of the command/query
 return(reader.getResult());
}
}

class Reader extends Thread {
// This class reads data in from the application server
protected DBClient client;
public String Result="original";
public boolean notifyOn=true;

public Reader(DBClient c) {
 super("DBclient Reader");
 this.client = c;
 this.start();
}

public synchronized void run() {
 String line="";

 DataInputStream in=null;
 try {
 in = new DataInputStream(client.socket.getInputStream());
 while(true) {
 // We start reading when we are notified from the main thread
 // and we stop when we have finished reading the stream for
 // this command/query.
 try {if (notifyOn) {this.wait(); notifyOn=false; Result="";}}
 catch (InterruptedException e){
 System.out.println("Caught an Interrupted Exception");
 }
 // Prevent simultaneous access
 line = in.readLine();
 if (line.equalsIgnoreCase("DONE")) {
 notifyOn=true;
 } else
 {
 if (line == null) {
 System.out.println("Server closed connection.");
 break;
 } // if NOT null
 else {Result+=line+"\n";}
 System.out.println("Read from server: "+Result);
 } // if NOT done..
 } //while loop
 }
 catch (IOException e) {System.out.println("Reader: " + e);}
 finally {
 try {if (in != null) in.close();}

 catch (IOException e) {
 System.exit(0);
 }
 }
}
public String getResult() {
 return (Result);
 }
}

The client class needs to be instantiated in a Java program, and the connection needs to be started before any queries can
be made. If you remember our Interactive Query Applet from Chapter 4, this sample applet will certainly look familiar to
you.

Listing 11.3 Applet to call our client class.

import java.net.URL;
import java.awt.*;
import java.applet.Applet;
import DBClient;

public class IQ extends java.applet.Applet {
 Button ConnectBtn = new Button("Connect to Database");
protected DBClient DataConnection;

 TextField QueryField = new TextField(40);
 TextArea OutputField = new TextArea(10,75);

public void init() {
 QueryField.setEditable(true);
 OutputField.setEditable(false);
 DataConnection = new DBClient(getDocumentBase().getHost(), 6001);

 GridBagLayout gridbag = new GridBagLayout();
 GridBagConstraints Con = new GridBagConstraints();
 setLayout(gridbag);
 setFont(new Font("Helvetica", Font.PLAIN, 12));
 setBackground(Color.gray);
 Con.weightx=1.0;
 Con.weighty=0.0;
 Con.anchor = GridBagConstraints.CENTER;
 Con.fill = GridBagConstraints.NONE;
 Con.gridwidth = GridBagConstraints.REMAINDER;
 gridbag.setConstraints(ConnectBtn, Con);
 add(ConnectBtn);

 add(new Label("SQL Query"));
 gridbag.setConstraints(QueryField, Con);
 add(QueryField);

 Label result_label = new Label("Result");
 result_label.setFont(new Font("Helvetica", Font.PLAIN, 16));
 result_label.setForeground(Color.blue);
 gridbag.setConstraints(result_label, Con);
 Con.weighty=1.0;
 add(result_label);

 gridbag.setConstraints(OutputField, Con);
 OutputField.setForeground(Color.white);
 OutputField.setBackground(Color.black);
 add(OutputField);

 show();
 } //init

public boolean handleEvent(Event evt) {

if ((evt.target == QueryField) & (evt.id == Event.KEY_PRESS))
 {char c=(char)evt.key;
 if (c == '\n')
 {
 // When a user enters q query and hits "return," we send the
 // query to be processed and get the results to show in the
 // OutputField.
 DataConnection.ProcessCommand("S");
 OutputField.setText(DataConnection.ProcessCommand(QueryField.getText()));
 return true;
 }
 }

if ((evt.target == ConnectBtn) & (evt.id == Event.ACTION_EVENT))
 {
 // This is the first command the application server expects,
 // connect to the data source.
 OutputField.setText(DataConnection.ProcessCommand("L"));
 return true;
 }
return false;
} // handleEvent()
}

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

You’ll need a Web page to call this applet from:

<HTML>
<HEAD>
<TITLE>
JDBC Client Applet - Interactive SQL Command Util via application server
</TITLE>
</HEAD>
<BODY>
<H1>Interactive JDBC SQL command interpreter via application server</H1>
<hr>
<applet code=IQ.class width=450 height=350>
</applet>
<hr>
</BODY>
</HTML>

Summary

In this chapter, we took a brief look at middleware. You saw the advantages and disadvantages of implementing a three-
tier system, and we created a simple application server and a client server which you can easily extend to fit your needs.

We’re almost at the end of this journey through the JDBC. The next chapter is a reference chapter of the JDBC API. It
contains documentation on the JDBC methods used in the writing of this book, as well as methods that we didn’t
explicitly cover. You may want to browse through the package tree to get an idea of how the various classes and
methods fit together, as well as their relation to one another.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Chapter 12
The JDBC API

This chapter ends our journey through the JDBC. I’ve provided a summary of the class interfaces and exceptions that
are available in the JDBC API version 1.01, which was the most current version at the time of this writing. Although this
chapter’s primary purpose is to serve as a reference, you should still read through the sections completely so that you are
aware of all the constructors, variables, and methods available.

Classes

We’ll begin with the class listings. Each class listing includes a description and the class’ constructors, methods, and
variables.

public class Date

This class extends the java.util.Date object. But unlike the java util.Date, which stores time, this class stores the day,
year, and month. This is for strict matching with the SQL date type.

Constructors

Constructor Additional Description

Date(int Year, int Month, int day) Construct a java.sql.Date object with the appropriate
parameters

Methods

Method Name Additional Description

public String toString() Formats a Date object as YYYY-MM-DD

public static Date valueOf (String str) Converts a String str to an sql.Date object

public class DriverManager

This class is used to load a JDBC driver and establish it as an available driver. It is usually not instantiated, but is called
by the JDBC driver.

Constructors

DriverManager()

Methods

Method Name Additional Description

public static void deregisterDriver(Driver-JDBCdriver)
throws SQLException

Drops a driver from the available drivers list

public static synchronized Connection getConnection
(String URL) throws SQLException

public static synchronized Connection getConnection
(String URL, String LoginName, String LoginPassword)
throws SQLException

public static synchronized Connection getConnection
(String URL, Properties LoginInfo) throws SQLException

Establishes a connection to the given database URL, with
the given parameters

public static Driver getDriver(String URL) throws
SQLException

Finds a driver that understands the JDBC URL from the
registered driver list

public static Enumeration getDrivers() Gets an Enumeration of the available JDBC drivers

public static int getLoginTimeout() Indicates the maximum time (seconds) that a driver will
wait when logging into a database

public static PrintStream getLogStream() Gets the logging PrintStream used by the DriverManager
and JDBC drivers

public static void println(String msg) Sends msg to the current JDBC logging stream (fetched
from above method)

public static synchronized void register Driver(Driver
JDBCdriver) throws SQLException

Specifies that a new driver class should call registerDriver
when loading to “register” with the DriverManager

public static void setLoginTimeout(int sec) Indicates the time (in seconds) that all drivers will wait
when logging into a database

public static void setLogStream (PrintStream log) Define the PrintStream that logging messages are sent to
via the println method above

public class DriverPropertyInfo

This class is for developers who want to obtain and set properties for a loaded JDBC driver. It’s not necessary to use this
class, but it is useful for debugging JDBC drivers and advanced development.

Constructors

Constructor Additional Description

public DriverPropertyInfo (String propName, String
propValue)

The propName is the name of the property, and
propValue is the current value; if it’s not been set, it may
be null

Variables

Variable Name Additional Description

choices If the property value is part of a set of values, then choices
is an array of the possible values

description The property’s description

name The property’s name

required This is true if this property is required to be set during
Driver.connect

value The current value of the property

public final class Numeric

This special fixed-point, high precision number class is used to store the SQL data types NUMERIC and DECIMAL.

Constructors

Constructor Additional Description

public Numeric(String strNum) Produces a Numeric object from a string; strNum can be
in one of two formats: “1234.32” or “3.1E8”

public Numeric(String strNum, int scale) Produces a Numeric, and scale is the number of digits
right of the decimal

public Numeric(int intNum) Produces a Numeric object from an int Java type
parameter

public Numeric(int intNum, int scale) Produces a Numeric object from an int, and scale gives
the desired number of places right of the decimal

public Numeric(long x) Produces a Numeric object from a long Java type
parameter

public Numeric(long x, int scale) Produces a Numeric object from a long parameter, and
scale gives the desired number of places right of the
decimal

public Numeric(double x, int scale) Produces a Numeric object from a double Java type
parameter, and scale gives the desired number of places
right of the decimal

public Numeric(Numeric num) Produces a Numeric object from a Numeric

public Numeric(Numeric num, int scale) Produces a Numeric object from a Numeric, and scale
gives the desired number of places right of the decimal

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Methods

Method Name Additional Description

public Numeric add(Numeric n) Performs arithmetic addition on the reference Numeric
object and the Numeric argument

public static Numeric createFromByteArray(byte
byteArray[])

Produces a Numeric object from the byte array parameter

public static Numeric createFromIntegerArray(int intArray
[])

Produces a Numeric object from the int array parameter

public static Numeric createFromRadixString(String str,
int radix)

Produces a Numeric object from the String and int radix
parameters

public static Numeric createFromScaled(long longNum,
int power)

Produces a Numeric object by taking the longNum to the
10^power

public Numeric divide(Numeric q) Divides the Numeric by the Numeric parameter q and
returns the result

public double doubleValue() Returns the Numeric as a Java type double

public boolean equals(Object objct) Returns true if the Numeric object equals the objct
parameter

public float floatValue() Returns the Numeric as a Java type float

public static int getRoundingValue() Returns the roundingValue used in rounding operations in
the Numeric object

public int getScale() Returns the number of places to the right of the decimal

public long getScaled() Returns the Numeric object as a long, but removes the
decimal (1234.567 -> 1234567); precision may be lost

public boolean greaterThan(Numeric num) Returns true if the Numeric object is greater than the
Numeric num argument

public boolean greaterThanOrEquals(Numeric num) Returns true if the Numeric object is greater than or equal
to the Numeric num argument

public int hashCode() Returns an integer hashcode for the Numeric object

public Numeric[] integerDivide(Numeric x) Returns an array with two Numeric objects: the first one
is the quotient, the second is the remainder

public int intValue() Returns the Numeric as a Java type int, digits after the
decimal are dropped

public boolean isProbablePrime() Returns true if the number is prime; it divides the
Numeric object by several small primes, and then uses the
Rabin probabilistic primality test to test if the number is
prime—the failure rate is less than (1/(4^N))

public boolean lessThan(Numeric num) Returns true if the Numeric object is less than the
Numeric num argument

public boolean lessThanOrEquals(Numeric num) Returns true if the Numeric object is less than or equal to
the Numeric num argument

public long longValue() Returns the Numeric as a Java type long

public Numeric modExp (Numeric numExp, Numeric
numMod)

The two parameters are used to do a numMod modulus to
the numExp exponent calculation; returns the result as a
Numeric

public Numeric modInverse(Numeric numMod)
The modular multiplicative inverse is returned using
numMod as the modulus

public Numeric multiply(Numeric num) Returns the product of the Numeric object and the
Numeric num parameter

public static Numeric pi(int places) Returns pi to the number of decimal places

public Numeric pow(int exp) Returns a Numeric object using the current Numeric
object taken to the power of the given exponent exp

public static Numeric random(int bits, Random randSeed) Returns a Numeric object that is a random number using
randSeed as a seed, having size in bits equal to the bits
parameter

public Numeric remainder(Numeric num) Returns the remainder resulting from dividing this
Numeric object by the Numeric num parameter

public static void setRoundingValue(int val) Sets the rounding value used in rounding operations for
the Numeric object

public Numeric setScale(int scale) Returns a Numeric object from the current object with the
specified scale parameter

public Numeric shiftLeft(int numberOfBits) Returns the Numeric object with the specified
numberOfBits shifted left

public Numeric shiftRight(int numberOfBits) Returns the Numeric object with the specified
numberOfBits shifted right

public int significantBits() Returns the number of significant bits in the Numeric
object

public Numeric sqrt() Returns the square root of this Numeric object

public Numeric subtract(Numeric num) Returns the difference between the Numeric object and
the Numeric num parameter

public String toString() Returns a String type that is the String representation of
the Numeric object

public String toString(int radix) Returns a String type that is the String representation of
the Numeric object, in the specified radix

Variables

Variable Name Additional Description

public final static Numeric ZERO A Numeric equivalent to the value of 0

public final static Numeric ONE A Numeric equivalent to the value of 1

public class Time

The public class Time is another SQL-JDBC data coversion class. This class extends java.util.Date, and basically
implements the time-storing functions that are not present in the java.sql.Date class shown earlier.

Constructors

Constructor Additional Description

public Time(int hour, int minute,
int second)

Makes a Time object with the specified hour, minute, and
second

Methods

Method Name Additional Description

public String toString() Returns a String with the Time formatted this way: HH:
MM:SS

public static Time valueOf(String numStr) Returns a Numeric object from the String numStr
parameter that is in the format: HH:MM:SS

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

public class TimeStamp

This class is used to map the SQL data type TIMESTAMP. It extends java.util.Date, and has nanosecond precision for
time-stamping purposes.

Constructors

Constructor Additional Description

public Timestamp(int year, int month, int date, int hour,
int minute, int second, int nano)

Builds a Timestamp object using the int parameters: year,
month, date, hour, minute, second, and nano

Methods

Method Name Additional Description

public boolean equals(Timestamp tstamp) Compares the Timestamp object with the Timestamp
parameter tstamp; returns true if they match

public int getNanos() Returns the Timestamp object’s nanoseconds

public void setNanos(int n) Sets the Timestamp object’s nanosecond value

public String toString() Returns a formatted String object with the value of the
Timestamp object in the format: YYYY-MM-DD HH:
MM:SS.F

public static Timestamp valueOf(String strts) Returns a Timestamp object converted from the strts
parameter that is in the previous format

public class Types

This class contains the SQL data types as constants. It is used by other classes as the standard constant for the data types.

Constructors

Constructor Additional Description

public Types() Builds a Types object; not usually necessary as they can
be accessed as so: Types.BIGINT

Variables

BIGINT
BINARY
BIT
CHAR
DATE
DECIMAL
DOUBLE
FLOAT
INTEGER
LONGVARBINARY
LONGVARCHAR
NULL
NUMERIC
OTHER (for a database specific data type, not a standard SQL-92 data type)
REAL
SMALLINT
TIME
TIMESTAMP
TINYINT
VARBINARY
VARCHAR

Interfaces

Next are the interface listings. As with the class listings, each interface listing includes a description and the interface’s
methods and variables.

public interface CallableStatement

This is the primary interface to access stored procedures on a database. If OUT parameters are specified and a query is
executed via this class, its results are fetched from this class and not the ResultSet class. This class extends the
PreparedStatement class, thus inheriting many of its methods.

The first 15 methods (the get methods) are identical in functionality to those in the ResultSet class, but they are
necessary if OUT parameters are used. See the ResultSet class for a description of the methods.

Methods

Method Name Additional Description

public abstract boolean getBoolean(int parameterIndex)
throws SQLException

public abstract byte getByte(int parameterIndex) throws
SQLException

public abstract byte[] getBytes(int parameterIndex)
throws SQLException

public abstract Date getDate(int parameterIndex) throws
SQLException

public abstract double getDouble(int parameterIndex)
throws SQLException

public abstract float getFloat(int parameterIndex) throws
SQLException

public abstract int getInt(int parameterIndex) throws
SQLException

public abstract long getLong(int parameterIndex) throws
SQLException

public abstract Numeric getNumeric(int parameterIndex,
int scale) throws SQLException

public abstract Object getObject(int parameterIndex)
throws SQLException

public abstract short getShort(int parameterIndex) throws
SQLException

public abstract String getString(int parameterIndex)
throws SQLException

public abstract Time getTime(int parameterIndex) throws
SQLException

public abstract Timestamp getTimestamp(int
parameterIndex) throws SQLException

public abstract void registerOutParameter(int paramIndex,
int sqlDataType) throws SQLException

Each parameter of the stored procedure must be registered
before the query is run; paramIndex is the stored proc’s
parameter location in the output sequence, and
sqlDataType is the data type of the parameter at the
specified location (sqlDataType should be set from the
Type class using one of its variables, for example, Types.
BIGINT)

public abstract void registerOutParameter(int
parameterIndex, int sqlDataType, int scale) throws
SQLException

Specifies the number of places to the right of the decimal
desired when getting Numeric data objects

public abstract boolean wasNull() throws SQLException Returns true if the stored proc parameter was value NULL

public interface Connection

This is the high-level class used to interact with a database. The object is established from the DriverManager.
getConnection method, which returns this object (Connection). This class obtains information about the specific
database connection via the instantiated JDBC driver, and its primary use is to perform queries via the createStatement,
prepareCall, and prepareStatement methods, which return Statement, PreparedCall, and PreparedStatement
objects, respectively.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Methods

Method Name Additional Description

public abstract void clearWarnings() throws
SQLException

Clears the warnings for the connection

public abstract void close() throws SQLException Closes the connection to the database

public abstract void commit() throws SQLException Functions as the JDBC equivalent of the standard
database commit command; it applies all commands and
changes made since the last commit or rollback, including
releasing database locks; results from queries are closed
when commit is invoked

public abstract Statement createStatement() throws
SQLException

Returns a Statement object, which can then be used to
perform actual queries

public abstract boolean getAutoClose() throws
SQLException

Returns true if automatic closing of the connection is
enabled; automatic closing results in the closing of the
connection when commit or rollback is performed

public abstract boolean getAutoCommit() throws
SQLException

Returns true if automatic committing of the connection is
on; automatic commit is on by default and means that the
connection is committed on individual transactions; the
actual commit occurs when the last row of a result set is
fetched, or when the ResultSet is closed

public abstract String getCatalog() throws SQLException Returns the current catalog name for the connection

public abstract DatabaseMetaData getMetaData() throws
SQLException

Returns a DatabaseMetaData object for the current
connection

public abstract int getTransactionIsolation() throws
SQLException

Returns the transaction isolation mode of the connection

public abstract SQLWarning getWarnings() throws
SQLException

Returns the SQLWarning object with the warnings for the
connection

public abstract boolean isClosed() throws SQLException Returns true if the connection has been closed

public abstract boolean isReadOnly() throws
SQLException

Returns true if the connection is a read only connection

public abstract String nativeSQL(String throws
SQLException

Returns the native SQL that the JDBC driver sqlQuery)
would send to the database for the specified sqlQuery
parameter

public abstract CallableStatement prepareCall(String
sqlQuery) throws SQLException

Returns a CallableStatement object used to perform stored
procedures; note that the SQL query must be passed in as
the sqlQuery parameter here

public abstract PreparedStatement prepareStatement
(String sqlQuery) throws SQLException

Returns a PreparedStatement object used to perform the
specified sqlQuery; this query can be executed repeatedly
if desired by using the PreparedStatement.execute method

public abstract void rollback() throws SQLException Drops changes made since the last commit or rollback,
and closes respective results; database locks are also
released

public abstract void setAutoClose (boolean throws
SQLException

Sets the connection to auto close mode if the auto) auto
parameter is true

public abstract void throws SQLException Sets the connection to auto commit mode if
setAutoCommit(boolean auto) the auto parameter is true

public abstract void setCatalog (String catalog) throws
SQLException

The catalog may be changed by specifying the catalog

public abstract void setReadOnly(boolean readOnly)
throws SQLException

Sets the connection to read only mode

public abstract void setTransactionIsolation(int level)
throws SQLException

Sets translation isolation to the specified level

Variables

The following constants are used in the setTransactionIsolation method as the level parameter:

TRANSACTION_NONE
TRANSACTION_READ_COMMITTED
TRANSACTION_READ_UNCOMMITTED
TRANSACTION_REPEATABLE_READ
TRANSACTION_SERIALIZABLE

public interface DatabaseMetaData

This class contains useful information about the open connection to the database. The Connection.getMetaData method
returns a Database-MetaData object that is specific to the opened connection.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Methods

Method Name Additional Description

public abstract boolean
allProceduresAreCallable() throwsk
SQLException

Returns true if all the procedures available to the user are
callable

public abstract boolean
allTablesAreSelectable() throws SQLException

Returns true if all of the tables are accessible to the user
on the open connection

public abstract boolean
dataDefinitionCausesTransactionCommit() throws
SQLException

Returns true if data defintion causes the transaction to
commit

public abstract boolean
dataDefinitionIgnoredInTransactions()
throws SQLException

Returns true if data defintion is ignored in the transaction

public abstract boolean
doesMaxRowSizeIncludeBlobs() throws
SQLException

Returns true if the getMaxSize method does not account
for the size of LONGVARCHAR and
LONGVARBINARY SQL data types

public abstract ResultSet
getBestRowIdentifier(String catalog, String
schema, String table, int scope, boolean
nullok) throws SQLException

Returns a ResultSet object for the specified parameters
that gets the specified table’s key or the attributes that can
be used to uniquely identify a row, which may be
composite; the scope parameter is one of the constants:
bestRowTemporary, bestRowTransaction, or
betRowSession; the nullok parameter allows columns that
may be null; the ResultSet is composed of the following
columns: scope (of the same types as above scope
parameter), column name, SQL data type, name of the
data type dependent on the database, precision, buffer
length, significant places if a Numeric type, and pseudo
column (one of the constants bestRowUnknown,
bestRowNotPseudo, or bestRowPseudo)

public abstract ResultSet getCatalogs()
throws SQLException

Returns a ResultSet object that contains a column for the
catalog names that are in the database

public abstract
String getCatalogSeparator() throws
SQLException

Returns the separator between the catalog String and the
table name

public abstract String getCatalogTerm()
throws SQLException

Returns the database-specific term for “catalog”

public abstract ResultSet
getColumnPrivileges(String catalog,
String schemaString table, String
columnNamePattern) throws SQLException

Returns a ResultSet object that contains information about
the specified table’s matching columnNamePattern; the
returned ResultSet object contains the following columns:
the catalog name that the table is in, the schema the table
is in, the table name, the column name, owner of the table,
grantee, type of access (SELECT, UPDATE, etc.), and if
the grantee can grant access to others, “YES,” “NO,” or
null (if unknown)

public abstract ResultSet
getColumns(String catalog,
String schemaPattern, String tableNamePattern,
String columnNamePattern) throws
SQLException

Returns a ResultSet object that contains information about
the matching columns for the matching tables and
schemas; the ResultSet contains the following columns:
catalog name, schema name, table name, column name,
SQL data type, name of the type specific to the database,
the maximum number of characters or precision
depending on the data type, buffer length (not used), the
number of digits (if applicable), radix (if applicable), null-
ability (one of the constants columnNoNulls,
columnNullable, columnNullableUnknown), comments
for the column, default value (if it exists, else null), empty
column, empty column, maximum number of bytes in the
column of type CHAR (if applicable), index number of
column; the last column is set to “YES” if it can contain
NULLS if not “NO” else it’s empty if the status is
unknown

public abstract ResultSet get
CrossReference(String primaryCatalog,
String primarySchema,
String primaryTable, String foreignCatalog,
String foreignSchema, String foreignTable)
throws SQLException

Returns a ResultSet object that describes the way a table
imports foreign keys; the ResultSet object returned by this
method contains these columns: primary key’s table
catalog, primary key’s table schema, primary key’s table,
primary key’s column name, foreign key’s table catalog,
foreign key’s table schema, foreign key’s table, foreign
key’s column name, sequence number within foreign key,
action to foreign key when primary key is updated (one of
the constants importedKeyCascade, importedKeyRestrict,
importedKeySetNull), action to foreign key when primary
key is deleted (one of the constants importedKeyCascade,
importedKeyRestrict, importedKeySetNull), foreign key
identifier, and primary key indentifier

public abstract String
getDatabaseProductName() throws
SQLException

Returns the database product name

public abstract String
getDatabaseProductVersion() throws
SQLException

Returns the database product number

public abstract int
getDefaultTransactionIsolation() throws
SQLException

Returns the default transaction isolation level as defined
by the applicable constants in the Connection class

public abstract int
getDriverMajorVersion()

Gets the driver’s major version

public abstract int
getDriverMinorVersion()

Gets the driver’s minor version

public abstract String getDriverName()
throws SQLException

Returns the name of the JDBC driver

public abstract String getDriverVersion()
throws SQLException

Returns the version of the JDBC driver

public abstract ResultSet
getExportedKeys(String catalog, String
schema, String table) throws SQLException

Returns a ResultSet object that describes the foreign key
attributes that reference the specified table’s primary key;
the ResultSet object returns the following columns:
primary key’s table catalog, primary key’s table schema,
primary key’s table, primary key’s column name, foreign
key’s table catalog, foreign key’s table schema, foreign
key’s table, foreign key’s column name, sequence number
within foreign key, action to foreign key when primary
key is updated (one of the constants
importedKeyCascade, importedKeyRestrict,
importedKeySetNull), action to foreign key when primary
key is deleted (one of the constants importedKeyCascade,
importedKeyRestrict, importedKeySetNull), foreign key
identifier, and primary key indentifier

public abstract String
getExtraNameCharacters() throws
SQLException

Returns characters that can be used in unquoted identifier
names besides the standard A through Z, 0 through 9, and
_

public abstract String
getIdentifierQuoteString() throws
SQLException

Returns the String used to quote SQL identifiers

public abstract ResultSet
getImportedKeys(String String schema,
String table) throws SQLException

Returns a ResultSet object that describes the primary key
attributes that are referenced by the specified table’s
foreign key attributes; the ResultSet object contains the
following columns: primary key’s table catalog, primary
key’s table schema, primary key’s table, primary key’s
column name, foreign key’s table catalog, foreign key’s
table schema, foreign key’s table, foreign key’s column
name, sequence number within foreign key, action to
foreign key when primary key is updated (one of the
constants importedKeyCascade, importedKeyRestrict,
importedKeySetNull), action to foreign key when primary
key is deleted (one of the constants importedKeyCascade,
importedKeyRestrict, importedKeySetNull), foreign key
identifier, and primary key indentifier

public abstract ResultSet
getIndexInfo(String catalog, String schema, String table,
boolean unique, boolean approximate) throws
SQLException

Returns a ResultSet object that describes the specified
table’s indices and statistics; the ResultSet object contains
the following columns: catalog name, schema name, table
name, “false” boolean (if tableIndexStatic is the type),
index catalog (or null if type is tableIndexStatic), index
type, sequence number, column name, column sort
sequence, number of unique values in the table or number
of rows (if tableIndexStatic), number of pages used for
the index (or the number of pages used for the table if
tableIndexStatic), and filter condition (if it exists)

public abstract int
getMaxBinaryLiteralLength() throws
SQLException

Returns the number of hex characters allowed in an inline
binary literal

public abstract int
getMaxCatalogNameLength() throws
SQLException

The maximum length for a catalog name

public abstract int
getMaxCharLiteralLength() throws
SQLException

Returns the maximum length for a character literal

public abstract int
getMaxColumnNameLength() throws
SQLException

Indicates the maximum length for a column name

public abstract int
getMaxColumnsInGroupBy() throws
SQLException

Indicates the maximum number of columns in a GROUP
BY clause

public abstract int
getMaxColumnsInIndex() throws
SQLException

Indicates the maximum number of columns in an index

public abstract int
getMaxColumnsInOrderBy() throws
SQLException

Indicates the maximum number of columns allowed in a
ORDER BY clause

public abstract int
getMaxColumnsInSelect() throws
SQLException

Indicates the maximum number of columns in a SELECT
statement

public abstract int
getMaxColumnsInTable() throws
SQLException

Indicates the maximum number of columns allowed in a
table

public abstract int getMaxConnections()
throws SQLException

Indicates the maximum number of simultaneous
connections allowed to the database

public abstract int
getMaxCursorNameLength() throws
SQLException

Returns the maximum allowed length of a cursor name

public abstract int
getMaxIndexLength() throws
SQLException

Returns the maximum length of an index in bytes

public abstract int
getMaxProcedureNameLength() throws
SQLException

Returns the maximum allowed length of a procedure
name

public abstract int getMaxRowSize()
throws SQLException

Indicates the maximum row size

public abstract int
getMaxSchemaNameLength() throws
SQLException

Returns the maximum allowed length of a schema name

public abstract int
getMaxStatementLength() throws
SQLException

Returns the maximum allowed length of a SQL statement

public abstract int getMaxStatements() throws
SQLException

Returns the maximum number of statements allowed at
one time

public abstract int
getMaxTableNameLength() throws
SQLException

Returns the maximum allowed length of a table name

public abstract int getMaxTablesInSelect()
throws SQLException

Indicates the maximum number of tables allowed in a
SELECT statement

public abstract int
getMaxUserNameLength() throws
SQLException

Returns the maximum allowed length of a user name

public abstract String
getNumericFunctions() throws
SQLException

Returns a comma-separated list of the math functions
available

public abstract
ResultSet getPrimaryKeys(String catalog,
String schema, String table) throws
SQLException

Returns a ResultSet object that contains the primary key’s
description for the specified table; the ResultSet object
contains the following columns: catalog name, schema
name, table name, column name, sequence number,
primary key name, and, possibly, NULL

public abstract ResultSet
getProcedureColumns(String catalog,
String schemaPattern, String
procedureNamePattern, String
columnNamePattern) throws SQLException

Returns a ResultSet object that describes the catalog’s
stored procedures and result columns matching the
specified procedureNamePatten and columnNamePattern;
the ResultSet object contains the following columns:
catalog name, schema name, procedure name, column or
parameter name, column type, data type, data name,
precision, length in bytes, scale, radix, nullability, and
comments

public abstract ResultSet
getProcedures(String catalogString String
procedureNamePattern) throws
SQLException

Returns a ResultSet object that describes the catalog’s
procedures; the ResultSet object contains the following
columns: catalog name, schema name, procedure name,
empty column, empty column, empty column, comments
about the procedure, and kind of procedure

public abstract String
getProcedureTerm() throws SQLException

Return the database-specific term for procedure

public abstract ResultSet getSchemas()
throws SQLException

Returns a ResultSet object that describes the schemas in a
database; the ResultSet object contains one column that
contains the schema names

public abstract String
getSchemaTerm() throws
SQLException

Returns the database-specific term for schema

public abstract String
getSearchStringEscape() throws
SQLException

Returns the escape characters for pattern searching

public abstract String getSQLKeywords()
throws SQLException

Returns a comma-separated list of keywords that the
database recognizes, but the keywords are not SQL-92
keywords

public abstract String getStringFunctions()
throws SQLException

Returns a comma-separated list of string functions in the
database

public abstract String getSystemFunctions() throws
SQLException

Returns a comma-separated list of system functions in the
database

public abstract ResultSet
getTablePrivileges(String catalog, String
schemaPattern schemaPattern, String
tableNamePattern)
throws SQLException

Returns a ResultSet object that describes the privileges for
the matching and tableNamePattern; the ResultSet object
contains the following columns: catalog name, schema
name, table name, grantor, grantee, type of access, and
“YES” if a grantee can grant other access

public abstract ResultSet getTables(String
catalog, String schemaPattern, String
tableNamePattern, String types[])
throws SQLException

Returns a ResultSet object that describes tables matching
the schemaPattern and tableNamePattern; the ResultSet
object contains the following columns: catalog name,
schema name, table name, table type, and comments

public abstract ResultSet getTableTypes()
throws SQLException

Returns a ResultSet object that describes the table types
available in the database; the ResultSet object contains the
column that is a list of the table types

public abstract String
getTimeDateFunctions() throws
SQLException

Returns the date and time functions for the database

public abstract ResultSet getTypeInfo()
throws SQLException

Returns a ResultSet object that describes the SQL data
types supported by the database; the ResultSet object
contains the columns: type name, SQL data type constants
in the Types class, maximum precision, prefix used to
quote a literal, suffix used to quote a literal, parameters
used to create the type, nullability, case sensitivity,
searchability, signed or unsigned (boolean), is it a
currency, auto incrementable or not, local version of data
type, minimum scale, maximum scale, empty column,
empty column, and radix

public abstract String getURL() throws
SQLException

The URL for the database

public abstract String getUserName()
throws SQLException

Returns the user name as known by the database

public abstract ResultSet
getVersionColumns(String catalog,
String String table) throws SQLException

Returns a ResultSet object that describes the specified
table’s columns that are updated when any column is
updated in the table; the ResultSet object contains the
following columns: empty columns, column name, SQL
datatype, type name, precision, column value length in
bytes, scale, and pseudoColumn or not

public abstract boolean isCatalogAtStart()
throws SQLException

Returns true if the catalog name appears at the start of a
qualified table name

public abstract boolean isReadOnly()
throws SQLException

Returns true if the database is in read only mode

public abstract boolean
nullPlusNonNullIsNull() throws
SQLException

Returns true if a concatenation between a NULL and non-
NULL is NULL

public abstract boolean
nullsAreSortedAtEnd()
throws SQLException

public abstract boolean
nullsAreSortedAtStart()
throws SQLException

public abstract boolean
nullsAreSortedHigh()
throws SQLException

public abstract boolean
nullsAreSortedLow()
throws SQLException

public abstract boolean
storesLowerCaseIdentifiers()
throws SQLException

public abstract boolean
storesLowerCaseQuotedIdentifiers() throws
SQLException

public abstract boolean
storesMixedCaseIdentifiers() throws SQLException

public abstract boolean
storesMixedCaseQuotedIdentifiers() throws
SQLException

public abstract boolean
storesUpperCaseIdentifiers()
throws SQLException

public abstract boolean
storesUpperCaseQuotedIdentifiers() throws
SQLException

public abstract boolean
supportsAlterTableWithAddColumn() throws
SQLException

public abstract boolean
supportsAlterTableWithDropColumn() throws
SQLException

public abstract boolean
supportsAlterTableWithDropColumn() throws
SQLException

public abstract boolean
supportsANSI92EntryLevelSQL() throws SQLException

public abstract boolean
supportsANSI92FullSQL() throws SQLException

public abstract boolean
supportsANSI92IntermediateSQL() throws
SQLException

public abstract boolean
supportsANSI92FullSQL() throws SQLException

public abstract boolean
supportsCatalogsInDataManipulation() throws
SQLException

public abstract boolean
supportsCatalogsInIndexDefinitions() throws
SQLException

public abstract boolean
supportsCatalogsInPrivilegeDefinitions() throws
SQLException

public abstract boolean
supportsCatalogsInProcedureCalls() throws
SQLException

public abstract boolean
supportsCatalogsInTableDefinitions() throws
SQLException

public abstract boolean
supportsColumnAliasing() throws SQLException

public abstract boolean
supportsConvert() throws SQLException

public abstract boolean
supportsConvert(int fromType, int toType) throws
SQLException

public abstract boolean
supportsCoreSQLGrammar() throws SQLException

public abstract boolean
supportsCorrelatedSubqueries() throws SQLException

public abstract boolean
supportsDataDefinitionAnd
DataManipulationTransactions() throws SQLException

public abstract boolean
supportsDataManipulation
TransactionsOnly() throws SQLException

public abstract boolean
supportsDifferentTableCorrelationNames() throws
SQLException

public abstract boolean
supportsExpressionsInOrderBy() throws SQLException

public abstract boolean
supportsExtendedSQLGrammar() throws SQLException

public abstract boolean
supportsFullOuterJoins() throws SQLException

public abstract boolean
supportsGroupBy() throws SQLException

public abstract boolean
supportsGroupByBeyondSelect() throws SQLException

public abstract boolean
supportsGroupByUnrelated() throws SQLException

public abstract boolean
supportsIntegrityEnhancementFacility() throws
SQLException

public abstract boolean
supportsLikeEscapeClause() throws SQLException

public abstract boolean
supportsLimitedOuterJoins() throws SQLException

public abstract boolean
supportsMinimumSQLGrammar() throws SQLException

public abstract boolean
supportsMixedCaseIdentifiers() throws SQLException

public abstract boolean
supportsMixedCaseQuotedIdentifiers() throws
SQLException

public abstract boolean
supportsMultipleResultSets() throws SQLException

public abstract boolean
supportsMultipleTransactions() throws SQLException

public abstract boolean
supportsNonNullableColumns() throws SQLException

public abstract boolean
supportsOpenCursorsAcrossCommit() throws
SQLException

public abstract boolean
supportsOpenCursorsAcrossRollback() throws
SQLException

public abstract boolean
supportsOpenStatementsAcrossCommit() throws
SQLException

public abstract boolean
supportsOpenStatementsAcrossRollback() throws
SQLException

public abstract boolean
supportsOrderByUnrelated()
throws SQLException

public abstract boolean
supportsOuterJoins()
throws SQLException

public abstract boolean
supportsPositionedDelete()
throws SQLException

public abstract boolean
supportsPositionedUpdate()
throws SQLException

public abstract boolean
supportsSchemasInDataManipulation()
throws SQLException

public abstract boolean
supportsSchemasInProcedureCalls()
throws SQLException

public abstract boolean
supportsSchemasInProcedureCalls()
throws SQLException

public abstract boolean
supportsSchemasInTableDefinitions()
throws SQLException

public abstract boolean
supportsSelectForUpdate()
throws SQLException

public abstract boolean
supportsStoredProcedures()
throws SQLException

public abstract boolean
supportsSubqueriesInComparisons()
throws SQLException

public abstract boolean
supportsSubqueriesInExists()
throws SQLException

public abstract boolean
supportsSubqueriesInIns()
throws SQLException

public abstract boolean
supportsSubqueriesInQuantifieds()
throws SQLException

public abstract boolean
supportsTableCorrelationNames() throws SQLException

public abstract boolean
supportsTransactionIsolationLevel(int level) throws
SQLException

public abstract boolean
supportsTransactions() throws SQLException

public abstract boolean
supportsUnion() throws SQLException

public abstract boolean
supportsUnionAll() throws SQLException

public abstract boolean
usesLocalFilePerTable() throws SQLException

public abstract boolean
usesLocalFiles() throws SQLException

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Variables

public final static int bestRowNotPseudo
public final static int bestRowPseudo
public final static int versionColumnUnknown
public final static int versionColumnNotPseudo
public final static int versionColumnPseudo
public final static int importedKeyCascade
public final static int importedKeyRestrict
public final static int importedKeySetNull
primary key has been updated or deleted
public final static int typeNoNulls
public final static int typeNullable
public final static int typeNullableUnknown
public final static int typePredNone
public final static int typePredChar
public final static int typePredBasic
public final static int typeSearchable
public final static short tableIndexStatistic
public final static short tableIndexClustered
public final static short tableIndexHashed
public final static short tableIndexOther

public interface Driver

The JDBC driver implements this interface. The JDBC driver must create an instance of itself and then register with the
DriverManager.

Methods

Method Name Additional Description

public abstract boolean acceptsURL(String URL) throws
SQLException

Returns true if the driver can connect to the specified
database in the URL

public abstract Connection connect(String url, Properties
props) throws SQLException

Connects to the database specified in the URL with the
specified Properties props

public abstract int getMajorVersion() Returns the JDBC driver’s major version number

public abstract int getMinorVersion() Returns the JDBC driver’s minor version number

public abstract DriverPropertyInfo[] getPropertyInfo
(String URL, Properties props) throws SQLException

Returns an array of DriverPropertyInfo that contains
possible properties based on the supplied URL and props

public abstract boolean jdbcCompliant() Returns true if the JDBC driver can pass the JDBC
compliance suite

public interface PreparedStatement

This object extends Statement, and it is used to perform queries that will be repeated. This class exists primarily to
optimize queries that will be executed repeatedly.

Methods

Note: The set methods set the parameter at the paramIndex location in the prepared query to the specified
paramType object.

Method Name Additional Description

public abstract void clearParameters() throws
SQLException

Resets all of the PreparedStatment’s query parameters

public abstract boolean execute() throws SQLException Runs the prepared query against the database; this method
is used primarily if multiple ResultSets are expected

public abstract ResultSet executeQuery() throws
SQLException

Executes the prepared query

public abstract int executeUpdate() throws SQLException Executes the prepared query; this method is used for
queries that do not produce a ResultSet (such as Update);
returns the number or rows affected or 0 if nothing is
returned by the SQL command

public abstract void setAsciiStream(int paramIndex,
InputStream paramType, int length) throws
SQLException

public abstract void setBinaryStream(int paramIndex,
InputStream paramType, int length) throws
SQLException

public abstract void setBoolean(int paramIndex, boolean
paramType) throws SQLException

public abstract void setByte(int paramIndex, byte
paramType) throws SQLException

public abstract void setBytes(int paramIndex, byte
paramType[]) throws SQLException

public abstract void setDate(int paramIndex, Date
paramType) throws SQLException

public abstract void setDouble(int double paramType)
throws SQLException

public abstract void setFloat(int paramIndex, float
paramType) throws SQLException

public abstract void setInt(int paramIndex, int
paramType) throws SQLException

public abstract void setLong(int paramIndex, long
paramType) throws SQLException

public abstract void setNull(int paramIndex, int sqlType)
throws SQLException

public abstract void setNumeric(int paramIndex, Numeric
paramType) throws SQLException

public abstract void setObject(int paramIndex, Object
paramType) throws SQLException

public abstract void setObject(int paramIndex, Object
paramType, int targetSqlType) throws SQLException

public abstract void setObject(int paramIndex, Object
paramType, int targetSqlType, int scale) throws
SQLException

public abstract void setShort(int paramIndex, short
paramType) throws SQLException

public abstract void setString(int paramIndex, String
paramType) throws SQLException

public abstract void setTime(int paramIndex, Time
paramType) throws SQLException

public abstract void setTimestamp(int
TimestampparamType) throws SQLException

public abstract void setUnicodeStream(int
paramIndexInputStream paramType, int length) throws
SQLException

public interface ResultSet

The results of a query are stored in this object, which is returned when the respective query execute method is run for the
Statement, PreparedStatement, and CallableStatement methods. The get methods in this class fetch the result for the
specified column, but the proper data type must be matched for the column. The getMetaData method in this class can
facilitate the process of checking the data type in each column of the result set.

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Methods

Method Name Additional Description

public abstract void clearWarnings() throws
SQLException

Clears the warnings for the ResultSet

public abstract void close() throws SQLException Closes the ResultSet

public abstract int findColumn(String columnName)
throws SQLException

Gets the column number for the specified columnName in
the ResultSet

public abstract ResultSetMetaData getMetaData() throws
SQLException

Returns a ResultSetMetaData object that contains
information about the query’s resulting table

public abstract InputStream getAsciiStream(int
columnIndex) throws SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract InputStream getAsciiStream(String
columnName) throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract InputStream getBinaryStream(int
columnIndex) throws SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract InputStream getBinaryStream(String
columnName) throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract boolean getBoolean(int columnIndex)
throws SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract boolean getBoolean(String columnName)
throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract byte getByte(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract byte getByte(String columnName) throws
SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract byte[] getBytes(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract byte[] getBytes(String columnName)
throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract String getCursorName() throws
SQLException

This returns a String with this ResultSet’s cursor name

public abstract Date getDate(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract Date getDate(String columnName) throws
SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract double getDouble(int columnIndex)
throws SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract double getDouble(String columnName)
throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract float getFloat(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract float getFloat(String columnName) throws
SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract int getInt(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract int getInt(String columnName) throws
SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract long getLong(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract long getLong(String columnName) throws
SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract Numeric getNumeric(int columnIndex, int
scale) throws SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract Numeric getNumeric(String columnName,
int scale) throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract Object getObject(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract Object getObject(String columnName)
throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract short getShort(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract short getShort(String columnName)
throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract String getString(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract String getString(String columnName)
throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract Time getTime(int columnIndex) throws
SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract Time getTime(String columnName)
throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract Timestamp getTimestamp (int
columnIndex) throws SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract Timestamp getTimestamp(String
columnName) throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract InputStream getUnicodeStream(int
columnIndex) throws SQLException

Fetches the result from the current row in the specified
column (the column number - columnIndex) in the
resulting table

public abstract InputStream getUnicodeStream(String
columnName) throws SQLException

Fetches the result from the current row in the specified
column (the column name - columnName) in the resulting
table

public abstract SQLWarning getWarnings() throws
SQLException

Returns the warnings for the ResultSet

public abstract boolean next() throws SQLException Retrieves the next row of the resulting table

public abstract boolean wasNull() throws SQLException
Returns true if the last column read by one of the get
methods was NULL

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

public interface ResultSetMetaData

This methods allows access to information about a query’s results, but not the results themselves. This object is created
by the ResultSet.getMetaData method.

Methods

Method Name Additional Description

public abstract String getCatalogName(int column)
throws SQLException

Returns the name of the catalog hit by the query

public abstract int getColumnCount() throws
SQLException

Returns the number of columns in the resulting table

public abstract int getColumnDisplaySize(int column)
throws SQLException

Returns the specified column’s maximum size

public abstract String getColumnLabel(int column)
throws SQLException

Gets a label, if it exists, for the specified column in the
result set

public abstract String getColumnName(int column)
throws SQLException

Gets a name for the specific column number in the
resulting table

public abstract int getColumnType(int column) throws
SQLException

Returns a constant in the Type class that is the JDBC type
of the specified column in the result set

public abstract String getColumnTypeName(int column)
throws SQLException

Gets the name of the type of the specified column in the
result set

public abstract int getPrecision(int column) throws
SQLException

Returns the precision of the data in the specified column,
if applicable

public abstract int getScale(int column) throws
SQLException

Returns the scale of the data in the specified column, if
applicable

public abstract String getSchemaName(int column)
throws SQLException

Returns the name of the schema that was accessed in the
query to produce the result set for the specific column

public abstract String getTableName(int column) throws
SQLException

Returns the name of the table from which the specified
column in the result set came from

public abstract boolean isAutoIncrement (int column)
throws SQLException

Returns true if the specified column is automatically
numbered

public abstract boolean isCaseSensitive (int column)
throws SQLException

Returns true if the specified column’s contents are case
sensitive, if applicable

public abstract boolean isCurrency(int column) throws
SQLException

Returns true if the content of the specific column in the
result set was a currency

public abstract boolean isDefinitelyWritable(int column)
throws SQLException

Returns true if a write operation in the specified column
can be done for certain

public abstract int isNullable(int column) throws
SQLException

Returns true if the specified column accepts NULL entries

public abstract boolean isReadOnly(int column) throws
SQLException

Returns true if the specified column is read only

public abstract boolean isSearchable(int column) throws
SQLException

Returns true if the WHERE clause can be a part of the
SQL query performed on the specified column

public abstract boolean isSigned(int column) throws
SQLException

Returns true if the data contained in the specified column
in the result set is signed, if applicable

public abstract boolean isWritable(int column) throws
SQLException

Returns true if a write on the specified column is possible

Variables

Variable Name Additional Description

public final static int columnNoNulls NULL values not allowed

public final static int columnNullable NULL values allowed

public final static int columnNullableUnknown NULL values may or may not be allowed, uncertain

public interface Statement

This class is used to execute a SQL query against the database via the Connection object. The Connection.
createStatement returns a Statement object. Methods in the Statement class produce ResultSet objects which are used
to fetch the result of a query executed in this class.

Methods

Method Name Additional Description

public abstract void cancel() throws SQLException If a query is running in another thread, a foreign thread
can cancel it by calling this method on the local Statement
object’s instantiation

public abstract void clearWarnings() throws
SQLException

Clears the warnings for the Statement

public abstract void close() throws SQLException
Closes the Statement and frees its associated resources,
including any ResultSets

public abstract boolean execute(String sql) throws
SQLException

Executes the parameter sql, which is an SQL query; this
method accounts for multiple ResultSets

public abstract ResultSet executeQuery(String sql) throws
SQLException

Executes a query that returns a ResultSet object (produces
some results) using the sql parameter as the SQL query

public abstract int executeUpdate(String sql) throws
SQLException

Executes a query that does not produce a resulting table;
the method returns the number of rows affected or 0 if no
result is produced

public abstract int getMaxFieldSize() throws
SQLException

Returns the maximum amount of data returned for a
resulting column; applies only to the following SQL
datatypes: BINARY, VARBINARY,
LONGVARBINARY, CHAR, VARCHAR, and
LONGVARCHAR

public abstract int getMaxRows() throws SQLException
Returns the maximum number of rows a ResultSet can
contain

public abstract boolean getMoreResults() throws
SQLException

Returns true if the next ResultSet of the query is present,
and moves the ResultSet into the current result space

public abstract int getQueryTimeout() throws
SQLException

Returns the number of seconds that the JDBC driver will
wait for a query to execute

public abstract ResultSet getResultSet() throws
SQLException

Returns a ResultSet object that is the current result of the
query; only one of these is returned if only one ResultSet
is the result of the query; if more ResultSets are present,
the getMoreResults method is used to move to the next
ResultSet

public abstract int getUpdateCount() throws
SQLException

Returns the update count; if the result is a ResultSet, -1 is
returned

public abstract SQLWarning getWarnings() throws
SQLException

Returns the warnings encountered for the query of this
Statement object

public abstract void setCursorName(String name) throws
SQLException

Sets the name of a cursor for future reference, and uses it
in update statements

public abstract void setEscapeProcessing(boolean enable)
throws SQLException

Sets escape substitution processing

public abstract void setMaxFieldSize(int max) throws
SQLException

Sets the maximum amount of data that can be returned for
a column of type BINARY, VARBINARY,
LONGVARBINARY, CHAR, VARCHAR, and
LONGVARCHAR

public abstract void setMaxRows(int max) throws
SQLException

Sets the maximum number of rows that can be retrieved
in a ResultSet

public abstract void setQueryTimeout(int seconds) throws
SQLException

Sets the time a driver will wait for a query to execute

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Previous Table of Contents Next

Exceptions

Finally, we get to the exceptions. As with the other sections, the exception listings include a description and the class’
constructors and methods.

public class DataTruncation

This class extends SQLWarning. An exception is produced when data transfer is prematurely terminated on a write
operation, and a warning is generated when data transfer is prematurely terminated on a read operation. You can use the
methods contained here to provide debugging information because the JDBC driver should throw this exception when a
data transfer problem is encountered.

Constructors

Constructor Additional Description

public DataTruncation(int index, boolean parameter,
boolean read, int dataSize, int transferSize)

Builds a Throwable DataTruncation object with the
specified properties

Methods

Method Name Additional Description

public int getDataSize() Returns the number of bytes that should have been
transferred

public int getIndex() Returns the index of the column or parameter that was
interrupted

public boolean getParameter() Returns true if the truncated value was a parameter, or
false if it was a column

public boolean getRead() Returns true if truncation occurred on a read; false means
truncation occurred on a write

public int getTransferSize() Returns the number of bytes actually transferred

public class SQLException

This class extends java.lang.Exception. It is the responsibility of the JDBC driver to throw this class when a problem
occurs during an operation.

Constructors

These constructors are used to create an SQLException with the specified information. It is normally not necessary to
create an exception unless the developer is working on creating a driver or higher level JDBC interface:

public SQLException()
public SQLException(String problem)
public SQLException(String problem, String SQLState)
public SQLException(String problem, String SQLState, int vendorCode)

Methods

Method Name Additional Description

public int getErrorCode() Returns the error code that was part of the thrown
exception

public SQLException getNextException() Returns the next exception as an SQLException object

public String getSQLState() Returns the SQL state that was part of the thrown
exception

public synchronized void setNextException
(SQLException excp)

Sets the next exception as excp for the SQLException
object

public class SQLWarning

This class extends SQLException. It is the responsibility of the JDBC driver to throw this class when a problem occurs
during an operation.

Constructors

These constructors build an SQLWarning object with the specified information. It is normally not necessary to create an
SQLWarning unless the developer is working on creating a driver or higher level JDBC interface:

public SQLWarning()
public SQLWarning(String problem)
public SQLWarning(String problem, String SQLstate)
public SQLWarning(String problem, String SQLstate, int vendorCode)

Methods

Method Name Additional Description

public SQLWarning getNextWarning() Returns an SQLWarning object that contains the next
warning

public void setNextWarning(SQLWarning warn)
Sets the next SQLWarning warning warn for the
SQLWarning object

Previous Table of Contents Next

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Table of Contents

Appendices

APPENDIX A
Java Language Fundamentals

If you are already familiar with programming, especially C or C++ programming, this appendix should serve as a good
hands-on review. As we discuss Java, we’ll point out the areas in which Java differs from other languages. If you don’t
have much experience using structured programming languages, this appendix will give you a good overview of the
basic components required to make programming languages like Java come alive.

The actual language components featured in this appendix include:

• Comments
• Identifiers
• Keywords
• Data types
• Variable declarations

What Makes A Java Program?

Before we get into the details of each Java language component, let’s stand back 10 steps and look at how many of the
key language components are used in the context of a Java program. Figure A.1(shown later) presents a complete visual
guide. Here, we’ve highlighted components such as variable declarations, Java keywords, operators, literals, expressions,
and control structures.

Figure A.1 A visual guide to the key Java language components.

javascript:displayWindow('images/apa-01.jpg',500,643)
javascript:displayWindow('images/apa-01.jpg',500,643)

Figure A.1 Continued

In case you’re wondering, the output for this program looks like this:

Hello John my name is Anthony
That's not my name!
Let's count to ten....
1 2 3 4 5 6 7 8 9 10
Now down to zero by two.
10 8 6 4 2 0
Finally, some arithmetic:
10 * 3.09 = 30.9
10 * 3.09 = 30 (integer cast)
10 / 3.09 = 3.23625
10 / 3.09 = 3 (integer cast)

Lexical Structure

The lexical structure of a language refers to the elements of code that make the code easy for us to understand, but have
no effect on the compiled code. For example, all of the comments you place in a program to help you understand how it
works are ignored by the Java compiler. You could have a thousand lines of comments for a 20-line program and the
compiled bytecodes for the program would be the same size if you took out all the comments. This does not mean that
all lexical structures are optional. It simply means that they do not effect the bytecodes.

The lexical structures we’ll discuss include:

• Comments
• Identifiers
• Keywords
• Separators

Comments

Comments make your code easy to understand, modify, and use. But adding comments to an application only after it is
finished is not a good practice. More often than not, you won’t remember what the code you wrote actually does after
you get away from it for a while. Unfortunately, many programmers follow this time-honored tradition. We suggest you
try to get in the habit of adding comments as you write your code.

Java supports three different types of comment styles. The first two are taken directly from C and C++. The third type of
comment is a new one that can be used to automatically create class and method documentation.

Comment Style #1

javascript:displayWindow('images/apa-02.jpg',544,677)
javascript:displayWindow('images/apa-02.jpg',544,677)

/* Comments here... */

This style of commenting comes to us directly from C. Everything between the initial slash-asterisk and ending asterisk-
slash is ignored by the Java compiler. This style of commenting can be used anywhere in a program, even in the middle
of code (not a good idea). This style of commenting is useful when you have multiple lines of comments because your
comment lines can wrap from one line to the next, and you only need to use one set of the /* and */ symbols. Examples:

/*
This program was written by Joe Smith.
It is the greatest program ever written!
*/

while (i <= /* comments can be placed here */ maxnum)
{
 total += i;
 i++;
}

In the second example, the comment line is embedded within the program statement. The compiler skips over the
comment text, and thus the actual line of code would be processed as:

while (i <= maxnum)
...

Programmers occasionally use this style of commenting while they are testing and debugging code. For example, you
could comment out part of an equation or expression:

sum = i /* + (base - 10) */ + factor;

Comment Style #2

// Comment here...

This style of commenting is borrowed from C++. Everything after the double slash marks is ignored by the Java
compiler. The comment is terminated by a line return, so you can’t use multiple comment lines unless you start each line
with the double-slash. Examples:

// This program was written by Joe Smith.
// It is the greatest program ever written!

while (i <= // this won't work maxnum)
{
 total += i;
 i++;
}

base = 20;
// This comment example also won't work because the Java
 compiler will treat this second line as a line of code
value = 50;

The comment used in the second example won’t work like you might intend because the remainder of the line of code
would be commented out (everything after i <=). In the third example, the second comment line is missing the starting //
symbols, and the Java compiler will get confused because it will try to process the comment line as if it were a line of

code. Believe it or not, this type of commenting mistake occurs often—so watch out for it!

Comment Style #3

/** Doc Comment here... */

This comment structure may look very similar to the C style of commenting, but that extra asterisk at the beginning
makes a huge difference. Of course, remember that only one asterisk must be used as the comment terminator. The Java
compiler still ignores the comment, but another program called JAVADOC.EXE, which ships with the Java
Development Kit, uses these comments to construct HTML documentation files that describe your packages, classes, and
methods, as well as all the variables they use.

Let’s look at the third style of commenting in more detail. If implemented correctly and consistently, this style of
commenting can provide you with numerous benefits. Figure A.2 shows what the output of the JAVADOC program
looks like when run on a typical Java source file.

Figure A.2 Sample output from the JAVADOC program.

If you have ever looked at the Java API documentation on Sun’s Web site, Figure A.2 should look familiar to you. In
fact, the entire API documentation was created this way.

JAVADOC will work if you have created comments or not. Figure A.3 shows the output from this simple application:

class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World");
 }
}

Figure A.3 Sample output from the JAVADOC program.

To add a little more information to our documentation, all we have to do is add this third style of comments. If we
change the little HelloWorld application and add a few key comments, the code will look like this:

/**

javascript:displayWindow('images/apa-03.jpg',576,840)
javascript:displayWindow('images/apa-03.jpg',576,840)
javascript:displayWindow('images/apa-04.jpg',724,551)
javascript:displayWindow('images/apa-04.jpg',724,551)

 * Welcome to HelloWorld
 * @author Anthony Potts
 * @version 1.1
 * @see java.lang.System
 */
class helloworld {
 /**
 * Main method of helloworld
 */
 public static void main(String args[]) {
 System.out.println("Hello World!");
 }
}

If you now run JAVADOC, the browser will display what you see in Figure A.4. As you can see, this gives us much
more information. This system is great for producing documentation for public distribution. Just like all comments,
though, it is up to you to make sure that the comments are accurate and plentiful enough to be helpful. Table A.1 lists the
tags you can use in your class comments.

Figure A.4 The new JAVADOC output.

Table A.1Tags for class comments.

Tag Description

@see classname Adds a hyperlinked “See Also” to your class; the
classname can be any other class

@see fully-qualified-classname Also adds a “See Also” to the class, but this time you
need to use a fully qualified class name like “java.awt.
window”

@see fully-qualified-classname#methodname Also adds a “See Also” to the class, but now you are
pointing to a specific method within that class

@version version-text Adds a version number that you provide; the version
number can be numbers or text

@author author-name Adds an author entry; you can use multiple author tags

The tags you can use in your method comments include
all of the “@see” tags as well as the following:

@param paramter-name description... Used to show which parameters the method accepts;
multiple “@param” tags are acceptable

@return description... Used to describe what the method returns

@exception fully-qualified-classname description... Used to add a “throw” entry that describes what type of
exceptions this method can throw; multiple “@exception”
tags are acceptable

javascript:displayWindow('images/apa-05.jpg',597,729)
javascript:displayWindow('images/apa-05.jpg',597,729)

Identifiers

Identifiers are the names used for variables, classes, methods, packages, and interfaces which allow the compiler to
distinguish them. Identifiers in the Java language should always begin with a letter of the alphabet, either upper or lower
case. The only exceptions to this rule are the underscore symbol (_) and the dollar sign ($), which may also be used. If
you try to use any other symbol or a numeral as the initial character, you will receive an error.

After the initial character, you are allowed to use numbers, but not all symbols. You can also use almost all of the
characters from the Unicode character set. If you are not familiar with the Unicode character set or you get errors, we
suggest that you stick with the standard alphabetic characters.

The length of an identifier is basically unlimited. We managed to get up to a few thousand characters before we got
bored. It’s doubtful you will ever need that many characters, but it is nice to know that the Java compiler won’t limit you
if you want to create long descriptive names. The only limit you may encounter involves creating class names. Since
class names are also used as file names, you need to create names that will not cause problems with your operating
system or anyone who will be using your program.

You must also be careful not to use any of the special Java keywords listed in the next section. Here are some examples
of valid identifiers:

HelloWorld $Money TickerTape
_ME2 Chapter3 ABC123

And here are some examples of invalid identifiers:

3rdChapter #Hello -Main

Common Errors When Using Identifiers

As you are defining and using identifiers in your Java programs, you are bound to encounter some errors from time to
time. Let’s look at some of the more common error messages that the Java compiler displays. Notice that we’ve included
the part of the code that is responsible for generating the error, the error message, and a description of the message so
that you can make sense of it.

Code Example:

public class 1test {
}

Error Message:

D:\java\lib\test.java:1: Identifier expected.

Description:

An invalid character has been used in the class identifier. You will see this error when the first character is invalid
(especially when it is a number).

Code Example:

public class te?st {

}

Error Message:

D:\java\lib\test.java:1: '{' Expected

Description:

This is a common error that occurs when you have an invalid character in the middle of an identifier. In this case, the
question mark is invalid, so the compiler gets confused where the class definition ends and its implementation begins.

Code Example:

public class #test {
}

Error Message:

D:\java\lib\test.java:1: Invalid character in input.

Description:

Here, the error stems from the fact that the initial character is invalid.

Code Example:

public class catch {
}

Error Message:

D:\java\lib\test.java:1: Identifier expected.

Description:

This error shows up when you use a protected keyword as an identifier.

Keywords

In Java, like other languages, there are certain keywords or “tokens” that are reserved for system use. These keywords
can’t be used as names for your classes, variables, packages, or anything else. The keywords are used for a number of
tasks such as defining control structures (if, while, and for) and declaring data types (int, char, and float). Table A.2
provides the complete list of Java keywords.

Table A.2Java language keywords.

Keyword Description

abstract Class modifier

boolean Used to define a boolean data type

break Used to break out of loops

byte Used to define a byte data type

byvalue * Not implemented yet

cast Used to translate from type to type

catch Used with error handling

char Used to define a character data type (16-bit)

class Used to define a class structure

const * Not implemented yet

continue Used to continue an operation

default Used with the switch statement

do Used to create a do loop control structure

Double Used to define a floating-point data type (64-bit)

else Used to create an else clause for an if statement

extends Used to subclass

final Used to tell Java that this class can not be subclassed

finally Used with exceptions to determine the last option before exiting; it guarantees that code
gets called if an exception does or does not happen

float Used to define a floating-point data type (32-bit)

for Used to create a for loop control structure

future * Not implemented yet

generic * Not implemented yet

goto * Not implemented yet

if Used to create an if-then decision-making control structure

implements Used to define which interfaces to use

import Used to reference external Java packages

inner Used to create control blocks

instanceof Used to determine if an object is of a certain type

int Used to define an integer data type (32-bit values)

interface Used to tell Java that the code that follows is an interface

interfacelong Used to define an integer data type (64-bit values)

native Used when calling external code

new Operator used when creating an instance of a class (an object)

null Reference to a non-existent value

operator * Not implemented yet

outer Used to create control blocks

package Used to tell Java what package the following code belongs to

private Modifier for classes, methods, and variables

protected Modifier for classes, methods, and variables

public Modifier for classes, methods, and variables

rest * Not implemented yet

return Used to set the return value of a class or method

short Used to define an integer data type (16-bit values)

static Modifier for classes, methods, and variables

super Used to reference the current class’ parent class

switch Block statement used to pick from a group of choices

synchronized Modifier that tells Java that only one instance of a method can be run at one time; it
keeps Java from running the method a second time before the first is finished; it is
especially useful when dealing with files to avoid conflicts

this Used to reference the current object

throw Statement that tells Java what exception to pass on an error

transient Modifier that can access future Java code

try Operator that is used to test for exceptions in code

var * Not implemented yet

void Modifier for setting the return value of a class or method to nothing

volatile Variable modifier

while Used to create a while loop control structure

The words marked with an asterisk (*) are not currently used in the Java language, but you still can’t use them to create
your own identifiers. More than likely, they will be used as keywords in future versions of the Java language.

Literals

Literals are the values that you assign when entering explicit values. For example, in an assignment statement like this
the value 10 is a literal. But do not get literals confused with types. Even though they usually go hand in hand, literals
and types are not the same.

i = 10;

Types are used to define what type of data a variable can hold, while literals are the values that are actually assigned to
those variables.

Literals come in three flavors: numeric, character, and boolean. Boolean literals are simply True and False.

Numeric Literals

Numeric literals are just what they sound like—numbers. We can further subdivide the numeric literals into integers and
floating-point literals.

Integer literals are usually represented in decimal format, although you can use the hexadecimal and octal format in Java.
If you want to use the hexadecimal format, your numbers need to begin with an 0x or 0X. Octal integers simply begin
with a zero (0).

Integer literals are stored differently depending on their size. The int data type is used to store 32-bit integer values
ranging from -2,147,483,648 to 2,147,483,648 (decimal). If you need to use even larger numbers, Java switches over to
the long data type, which can store 64 bits of information for a range of - 9.223372036855e+18 to 9.223372036855e+18.
This would give you a number a little larger than 9 million trillion—enough to take care of the national debt! To specify
a long integer, you will need to place an “l” or “L” at the end of the number. Don’t get confused by our use of the terms

int and long. There are many other integer data types used by Java, but they all use int or long literals to assign values.
Table A.3 provides a summary of the two integer literals.

Table A.3Summary of integer literals.

Integer Literals Ranges Negative Minimum Positive Maximum

int data type -2,147,483,648 2,147,483,648

long data type -9.223372036855e+18 9.223372036855e+18

Here are some examples of how integer literals can be used to assign values in Java statements:

int i;
i = 1; // All of these literals are of the integer type
i= -9;
i = 1203131;

i = 0xA11; // Using a hexadecimal literal
i = 07543; // Using an octal literal

i = 4.5; // This would be illegal because a floating-point
 // literal can't be assigned to an integer type
long lg;
lg = 1L; // All of these literals are of the long
 // integer type
lg = -9e15;
lg = 7e12;

The other type of numeric literal is the floating-point literal. Floating-point values are any numbers that have anything to
the right of the decimal place. Similar to integers, floating-point values have 32-bit and 64-bit representations. Both data
types conform to IEEE standards. Table A.4 provides a summary of the two floating-point literals.

Table A.4Summary of floating-point literals.

Floating-Point Ranges Negative Minimum Positive Maximum

float data type 1.40239846e-45 3.40282347e38

double data type 4.94065645841246544e-324 1.79769313486231570e308

Here are some examples of how floating-point literals can be used to assign values in Java statements:

float f;
f = 1.3; // All of these literals are of the floating-point
 // type float (32-bit)
f = -9.0;
f = 1203131.1241234;

double d;
d = 1.0D; // All of these literals are of the floating-
 // point type double(32-bit)
d = -9.3645e235;
d = 7.0001e52D;

Character Literals

The second type of literal that you need to know about is the character literal. Character literals include single characters
and strings. Single character literals are enclosed in single quotation marks, while string literals are enclosed in double
quotes.

Single characters can be any one character from the Unicode character set. There are also a few special two-character
combinations that are non-printing characters but which perform important functions. Table A.5 shows these special
combinations.

Table A.5Special character combinations in Java.

Character Combination Standard Designation Description

\ <newline> Continuation

\n NL or LF New Line

\b BS Backspace

\r CR Carriage Return

\f FF Form Feed

\t HT Horizontal Tab

\\ \ Backslash

\’ ‘ Single Quote

\” “ Double Quote

\xdd 0xdd Hex Bit Pattern

\ddd 0ddd Octal Bit Pattern

\uddd 0xdddd Unicode Character

The character combinations from Table A.5 also apply to strings. Here are some examples of how character and string
literals can be used in Java statements:

char ch;
ch = 'a'; // All of these literals are characters
ch = \n; // Assign the newline character
ch = \'; // Assign a single quote
ch = \x30; // Assign a hexadecimal character code

String str;
str = "Java string";

Operators

Operators are used to perform computations on one or more variables or objects. You use operators to add values,
compare the size of two numbers, assign a value to a variable, increment the value of a variable, and so on. Table A.6
lists the operators used in Java. Later in this appendix, we’ll explain in detail how each operator works, and we’ll also
explain operator precedence.

Table A.6Operators used in Java.

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

++ Increment

— Decrement

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

! Logical NOT

&& Logical AND

|| Logical OR

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

~ Bitwise complement

<< Left shift

>> Right shift

>>> Zero fill right shift

= Assignment

+= Assignment with addition

-= Assignment with subtraction

*= Assignment with multiplication

/= Assignment with division

%= Assignment with modulo

&= Assignment with bitwise AND

|= Assignment with bitwise OR

^= Assignment with bitwise exclusive OR

<<= Assignment with left shift

>>= Assignment with right shift

>>>= Assignment with zero fill right shift

Separators

Separators are used in Java to delineate blocks of code. For example, you use curly brackets to enclose a method’s
implementation, and you use parentheses to enclose arguments being sent to a method. Table A.7 lists the seperators
used in Java.

Table A.7Separators used in Java.

Separator Description

() Used to define blocks of arguments

[] Used to define arrays

{ } Used to hold blocks of code

, Used to separate arguments or variables in a declaration

; Used to terminate lines of contiguous code

Types And Variables

Many people confuse the terms types and variables, and use them synonymously. They are, however, not the same.
Variables are basically buckets that hold information, while types describe what type of information is in the bucket.

A variable must have both a type and an identifier. Later in this appendix we will cover the process of declaring
variables. For now, we just want to guide you through the details of how to decide which types to use, and how to use
them properly.

Similar to literals, types can be split into several different categories, including the numeric types—byte, short, int,
long, float, and double—and the char and boolean types. We will also discuss the string type. Technically, the string
type is not a type—it is a class. However, it is used so commonly that we decided to include it here.

All of the integer numeric types use signed two’s-complement integers for storing data. Table A.8 provides a summary
of the ranges for each of the key Java datatypes.

Table A.8Summary of the Java datatypes.

Data Type Negative Minimal Positive Maximal

byte -256 255

short -32768 32767

int -2147483648 2147483647

long -9223372036854775808 9223372036854775807

float 1.40239846e-45 3.40282347e38

double 4.94065645841246544e-324 1.79769313486231570e308

boolean False True

byte

The byte type can be used for variables whose value falls between -256 and 255. byte types have an 8-bit length. Here
are some examples of byte values:

-7 5 238

short

The short numeric type can store values ranging from -32768 to 32767. It has a 16-bit depth. Here are some examples:

-7 256 -29524

int

The int data type takes the short type to the next level. It uses a 32-bit signed integer value that takes our minimal and
maximal value up to over 2 billion. Because of this tremendous range, it is one of the most often used datatypes for
integers.

Often, unskilled programmers will use the int datatype even though they don’t need the full resolution that this datatype
provides. If you are using smaller integers, you should consider using the short data type. The rule of thumb to follow is
if you know exactly the range of values a certain variable will store, use the smallest datatype possible. This will let your
program use less memory and therefore run faster, especially on slower machines or machines with limited RAM.

Here are some examples of int values:

-7 256 -29523234 1321412422

long

The long data type is the mother of all integer types. It uses a full 64-bit data path to store values that reach up to over 9
million trillion. But be extremely careful when using variables of the long type. If you start using too many of them, or
God forbid, an array of longs, you can quickly eat up a ton of resources.

Tip: The danger of using long.
Java provides useful garbage collection tools, so when you are done with these large data types, they will be
disposed of and their resources reclaimed. But if you are creating large arrays of long integers, you could really
be asking for trouble. For example, if you created a two-dimensional array of long integers that had a 100x100
grid, you would be using up about 100 kilobytes of memory.

Here are some examples of long values:

-7 256 -29523234 1.835412e15 -3e18

float

The float data type is one of two types used to store floating-point values. The float type is compliant with the IEEE 754
conventions. The floating-point types of Java can store gargantuan numbers. We do not have enough room on the page
to physically show you the minimal and maximal values the float data type can store, so we will use a little bit of tricky
sounding lingo taken from the Java manual:

The finite nonzero values of type float are of the form s * m * 2e, where s is +1 or -1, m is a positive
integer less than 2^24 and e is an integer between -149 and 104, inclusive.

Whew, that’s a mouthful. Here are a few examples to show you what the float type might look like in actual use:

-7F 256.0 -23e34 23e100

double

As if the float type could not hold enough, the double data type gives you even bigger storage space. Let’s look again at

Sun’s definition of the possible values for a double:

The finite nonzero values of type float are of the form s * m * 2e, where s is +1 or -1, m is a positive
integer less than 2^53 and e is an integer between -1045 and 1000, inclusive.

Again, you can have some truly monstrous numbers here. But when you start dealing with hardcore programming, this
type of number becomes necessary from time to time, so it is wise to understand its ranges. Here are a few examples:

-7.0D 256.0D -23e424 23e1000

boolean

In other languages, the boolean data type has been designated by an integer with a nonzero or zero value to represent
True and False, respectively. This method works well because it gives the user the ability to check for all kinds of values
and perform expressions like this:

x=2;
if x then...

This can be handy when performing parsing operations or checking string lengths. In Java, however, the boolean data
type has its own True and False literals that do not correspond to other values. In fact, as you will learn later in this
appendix, Java does not even allow you to perform casts between the boolean data type and any others. There are ways
around this limitation, and we will discuss them when we talk about conversion methods.

char

The char data type is used to store single characters. Since Java uses the Unicode character set, the char type needs to be
able to store thousands of characters, so it uses a 16-bit signed integer. The char data type has the ability to be cast or
converted to almost all of the others, as we will show you in the next section.

string

The string type is actually not a primitive data type; it is a class all its own. We decided to talk a little about it here
because it is so commonly used that it might as well be considered a primitive. In C and C++, strings are stored in arrays
of chars. Java does not use the char type for this, but instead has created its own class that handles strings.

One big advantage to using a class instead of an array of char types is that we are more or less unlimited in the amount
of information we can place in a string variable. In C++, the array of chars was limited; now that limitation is taken care
of within the class, where we do not care how it is handled.

Variable Declarations

Declaring variables in Java is very similar to declaring variables in C/C++, as long as you are using the primitive data
types. As we said before, almost everything in Java is a class—except the primitive data types. Let’s look at how
primitive data types are declared.

Here is what a standard declaration for a primitive variable might look like:

int i;

We have just declared a variable “i” to be an integer. Here are a few more examples:

byte i, j;
int a=7, b = a;
float f = 1.06;
String name = "Tony";

These examples illustrate some of the things you can do while declaring variables. Let’s look at each one individually.

int i;

This is the most basic declaration, with the data type followed by the variable you are declaring.

byte i, j;

In this example, we are declaring two byte variables at one time. There is no limit to the number of variables you can
declare this way. All you have to do is add a comma between each variable you wish to declare of the given type, and
Java takes care of it for you.

You also have the ability to assign values to variables as you declare them. You can even use a variable you are
declaring as part of an expression for the declaration of another variable in the same line. Before we confuse you more,
here is an example:

int i = 1;
int j = i, k= i + j;

Here we have first declared a variable i as int and assigned it a value of 1. In the next line, we start by declaring a
variable j to be equal to i. This is perfectly legal. Next, on the same line, we declare a variable k to be equal to i plus j.
Once again, Java handles this without a problem. We could even shorten these two statements to one line like this:

int i = 1, j = i, k= i + j;

One thing to watch out for is using variables before they have been declared. Here’s an example:

int j = i, k= i + j; // i is not defined yet
int i = 1;

This would cause an “undefined variable” error because Java does not know to look ahead for future declarations. Let’s
look at another example:

float f = 1.06;

Does this look correct? Yes, but it’s not. This is a tricky one. By default, Java assumes that numbers with decimal points
are of type double. So, when you try and declare a float to be equal to this number, you receive the following error:

Incompatible type for declaration. Explicit cast needed to convert double
to float.

Sounds complicated, but all this error message means is that you need to explicitly tell Java that the literal value 1.06 is a
float and not a double. There are two ways to accomplish this. First, you can cast the value to a float like this:

float f = (float)1.06;

This works fine, but it can get confusing. Java also follows the convention used by other languages of placing an “f” at
the end of the literal value to indicate explicitly that it is a float. This also works for the double data type, except that
you would use a “d.” (By the way, capitalization of the f and d does not make a difference.)

float f = 1.06f;
double d = 1.06d;

You should realize that the “d” is not needed in the double declaration because Java assumes it. However, it is better to
label all of your variables when possible, especially if you are not sure.

Using Arrays

It’s difficult to imagine creating any large application or applet without having an array or two. Java uses arrays in a
much different manner than other languages. Instead of being a structure that holds variables, arrays in Java are actually
objects that can be treated just like any other Java object.

The powerful thing to realize here is that because arrays are objects that are derived from a class, they have methods you
can call to retrieve information about the array or to manipulate the array. The current version of the Java language only
supports the length method, but you can expect that more methods will be added as the language evolves.

One of the drawbacks to the way Java implements arrays is that they are only one-dimensional. In most other languages,
you can create a two-dimensional array by just adding a comma and a second array size. In Java, this does not work. The
way around this limitation is to create an array of arrays. Because this is easy to do, the lack of built-in support for multi-
dimensional arrays shouldn’t hold you back.

Declaring Arrays

Since arrays are actually instances of classes (objects), we need to use constructors to create our arrays much like we did
with strings. First, we need to pick a variable name, declare it as an array object, and specify which data type the array
will hold. Note that an array can only hold a single data type—you can’t mix strings and integers within a single array.
Here are a few examples of how array variables are declared:

int intArray[];
String Names[];

As you can see, these look very similar to standard variable declarations, except for the brackets after the variable name.
You could also put the brackets after the data type if you think this approach makes your declarations more readable:

int[] intArray;
String[] Names;

Sizing Arrays

There are three ways to set the size of arrays. Two of them require the use of the new operator. Using the new operator
initializes all of the array elements to a default value. The third method involves filling in the array elements with values
as you declare it.

The first method involves taking a previously declared variable and setting the size of the array. Here are a few examples:

int intArray[]; // Declare the arrays
String Names[];

intArray[] = new int[10]; // Size each array
Names[] = new String[100];

Or, you can size the array object when you declare it:

int intArray[] = new int[10];
String Names[] = new String[100];

Finally, you can fill in the array with values at declaration time:

String Names[] = {"Tony", "Dave", "Jon", "Ricardo"};
int[] intArray = {1, 2, 3, 4, 5};

Accessing Array Elements

Now that you know how to initialize arrays, you’ll need to learn how to fill them with data and then access the array
elements to retrieve the data. We showed you a very simple way to add data to arrays when you initialize them, but often
this just is not flexible enough for real-world programming tasks. To access an array value, you simply need to know its
location. The indexing system used to access array elements is zero-based, which means that the first value is always
located at position 0. Let’s look at a little program that first fills in an array and then prints it out:

public class powersOf2 {

 public static void main(String args[]) {
 int intArray[] = new int[20];
 for (int i = 0; i < intArray.length; i++) {
 intArray[i] = 1;
 for(int p = 0; p < i; p++) intArray[i] *= 2 ;
 }
 for (int i = 0; i < intArray.length; i++)
 System.out.println("2 to the power of " + i + " is " +
 intArray[i]);
 }
}

The output of this program looks like this:

2 to the power of 0 is 1
2 to the power of 1 is 2
2 to the power of 2 is 4
2 to the power of 3 is 8
2 to the power of 4 is 16
2 to the power of 5 is 32
2 to the power of 6 is 64
2 to the power of 7 is 128
2 to the power of 8 is 256
2 to the power of 9 is 512
2 to the power of 10 is 1024
2 to the power of 11 is 2048
2 to the power of 12 is 4096
2 to the power of 13 is 8192
2 to the power of 14 is 16384
2 to the power of 15 is 32768

2 to the power of 16 is 65536
2 to the power of 17 is 131072
2 to the power of 18 is 262144
2 to the power of 19 is 524288

So, how does the program work? We first create our array of integer values and assign it to the intArray variable. Next,
we begin a loop that goes from zero to intArray.length. By calling the length method of our array, we find the number
of indexes in the array. Then, we start another loop that does the calculation and stores the result in the index specified
by the i variable from our initial loop.

Now that we have filled in all the values for our array, we need to step back through them and print out the result. We
could have just put the print statement in the initial loop, but the approach we used gives us a chance to use another loop
that references our array.

Here is the structure of an index call:

arrayName[index];

Pretty simple. If you try and use an index that is outside the boundaries of the array, a run-time error occurs. If we
change the program to count to an index of 21, instead of the actual array length of 20, we would end up getting an error
message like this:

java.lang.ArrayIndexOutOfBoundsException: 20
 at powersOf2.main(powersOf2.java:10)

This is a pretty common error in any programming language. You need to use some form of exception handling to watch
for this problem, unless, of course, you are positive you can create code that never does this (in your dreams).

Multidimensional Arrays

Multidimensional arrays are created in Java by using arrays of arrays. Here are a few examples of how you can
implement multidimensional arrays:

int intArray[][];
String Names[][];

We can even do the same things we did with a single dimension array. We can set the array sizes and even fill in values
while we declare the arrays:

int intArray[][] = new int[10][5];
String Names[][] = new String[25][3];

int intArray[][] = {{2, 3, 4} {1, 2, 3}};
String Names[][] = {{"Jon", "Smith"}{"Tony", "Potts"}{"Dave",
 "Friedel"}};

We can also create arrays that are not “rectangular” in nature. That is, each array within the main array can have a
different number of elements. Here are a few examples:

int intArray[][] = {{1, 2} {1, 2, 3} {1, 2, 3, 4}};
String Names[][] = {{"Jon", "Smith"} {"Tony","A", "Potts"} {"Dave", "H",
 "Friedel", "Jr."}};

Accessing the data in a multidimensional array is not much more difficult than accessing data in a single-dimensional
array. You just need to track the values for each index. Be careful though, as you add dimensions, it becomes
increasingly easy to create out of bounds errors. Here are a few examples of how you can declare multidimensional
arrays, assign values, and access array elements:

int intArray[][] = new int[10][5]; // Declare the arrays
String Names[][] = new String[25][3];

intArray[0][0] = 5; // Assign values
intArray[7][2] = 37;
intArray[7][9] = 37; // This will cause an out of bounds error!
Names[0][0] = "Bill Gates";
// Access an array element in a Java statement
System.out.println(Names[0][0]);

Using Command-Line Arguments

Programming with command-line arguments is not a topic you’d typically expect to see in an appendix on basic data
types and variable declarations. However, because we’ve been using command-line arguments with some of the sample
programs we’ve been introducing, we thought it would be important to discuss how this feature works in a little more
detail.

Command-line arguments are only used with Java applications. They provide a mechanism so that the user of an
application can pass in information to be used by the program. Java applets, on the other hand, read in parameters using
HTML tags. Command-line arguments are common with languages like C and C++, which were originally designed to
work with command-line operating systems like Unix.

The advantage of using command-line arguments is that they are passed to a program when the program first starts,
which keeps the program from having to query the user for more information. Command-line arguments are great for
passing custom initialization data.

Passing Arguments

The syntax for passing arguments themselves to a program is extremely simple. Just start your programs as you usually
would and then add any number of arguments to the end of the line, with each one separated by a space. Here is a sample
call to a program named “myApp”:

Java myApp open 640 480

In this case, we are calling the Java run-time interpreter and telling it to run the class file “myApp.” We then are passing
in three arguments: “open,” “640,” and “480.”

If you wanted to pass in a longer string with spaces as an argument, you could. In this case, you enclose the string in
quotation marks and Java will treat it as a single argument. Here is an example:

Java myApp "Nice program!" "640x480"

Once again, the name of the program is “myApp.” This time, however, we are only sending it two arguments: “Nice
program!” and “640x480.” Note that the quotes themselves are not passed, just the string between the quotes.

Reading In Arguments

Now that we know how to pass arguments, where are they stored? How can we see them in our application? If you’ll
recall, all applications have a main() method. You should also notice that this method has an interesting argument
structure:

public static void main(String args[]) {
 ...
}

Here, main() indicates that it takes an array named args[] of type String. Java takes any command-line arguments and
puts them into the args[] string array. The array is dynamically resized to hold just the number of arguments passed, or
zero if none are passed. Note that the use of the args identifier is completely arbitrary. You can use any word you want
as long as it conforms to the Java naming rules. You can even get a little more descriptive, like this:

public static void main(String commandLineArgumentsArray[]) { ...

That may be a bit much, but you will never get confused as to what is in the array!

Accessing Arguments

Once we’ve passed in the arguments to an application and we know where they are stored, how do we get to them? Since
the arguments are stored in an array, we can access them just like we would access strings in any other array. Let’s look
at a simple application that takes two arguments and prints them out:

class testArgs {
 public static void main(String args[]) {
 System.out.println(args[0]);
 System.out.println(args[1]);
 }
}

If we use this command-line statement to run the application

java testArgs hello world

we’d get this output:

hello
world

Now, try this command line:

java testArgs onearg

Here is the result:

onearg
java.lang.ArrayIndexOutOfBoundsException: 1
 at testArgs.main(testArgs.java:4)

What happened? Since we were only passing a single argument, the reference to args[1] is illegal and produces an error.

So, how do we stop from getting an error? Instead of calling each argument in line, we can use a for loop to step through
each argument. We can check the args.length variable to see if we have reached the last item. Our new code will also
recognize if no arguments have been passed and will not try and access the array at all. Enough talking, here is the code:

class testArgs {
 public static void main(String args[]) {
 for (int i = 0; i < args.length; i++) {
 System.out.println(args[i]);
 }
 }
}

Now, no matter how many arguments are passed (or none), the application can handle it.

Tip: Indexing command-line arguments.
Don’t forget that Java arrays are zero-based, so the first command-line argument is stored at position 0, not
position 1. This is different than some other languages, like C, where the first argument would be at position 1.
In C, position 0 would store the name of the program.

Dealing With Numeric Arguments

One more thing we should cover here is how to deal with numeric arguments. If you remember, all arguments are passed
into an array of strings, so we need to convert those values into numbers.

This is actually very simple. Each data type has an associated class that provides methods for dealing with that data type.
Each of these classes has a method that creates a variable of that type from a string. Table A.9 presents a list of those
methods.

Table A.9Classes and their associated methods for handling data types.

Class Method Return

Integer parseInt(String) An integer value

Integer valueOf(String) An Integer object initialized to the value represented by
the specified String

Long parseLong(String) A long value

Long valueOf(String) A Long object initialized to the value represented by the
specified String

Double valueOf(String) A Double object initialized to the value represented by
the specified String

Float valueOf(String) A Float object initialized to the value represented by the
specified String

Make sure you understand the difference between the parse*() methods and the valueOf() methods. The parsing
methods just return a value that can be plugged into a variable or used as part of an expression. The valueOf() methods
return an object of the specified type that has an initial value equal to the value of the string.

/**
 * Sample Java Application
 * @author Anthony Potts
 * @version 1.0

 */
class Test extends Object { // Begin Test class
 // Define class variables
 static int i = 10;
 static final double d = 3.09;
 /*
 The main() method is automatically called when
 the program is run. Any words typed after the program
 name when it is run are placed in the args[] variable,
 which is an array of strings.
 For this program to work properly, at least one word must
 be typed after the program name or else an error will occur.
 */
 public static void main(String args[]) {
 Test thisTest = new Test(); // Create instance (object) of class
 String myName = "Anthony";
 boolean returnValue;
 System.out.println("Hello " + args[0] + " my name is " + myName);
 if(thisTest.sameName(args[0], myName)) {
 System.out.println("Your name is the same as mine!");
 } else {
 System.out.println("That's not my name!");
 }
 System.out.println("Let's count to ten....");
 for (int x = 1; x < 11; x++) {
 System.out.print(x + " ");
 }
variable declarations
while control statement
method modifier
 System.out.println("\nNow down to zero by two.");
 while (i > -1) {
 System.out.print(i + " ");
 i -= 2;
 }
 System.out.println("\nFinally, some arithmetic:");
 thisTest.doArithmetic();
 }
 // This method compares the two names sent to it and
 // returns true if they are the same and false if they are not
 public boolean sameName(String firstName, String secondName) {
 if (firstName.equals(secondName)) {
 return true;
 } else {
 return false;
 }
 }
 // This method performs a few computations and prints the result
 public void doArithmetic(){
 i = 10;
 System.out.println(i + " * " + d + " = " + (i * d));
 System.out.println(i + " * " + d + " = " +
 (int)(i * d) + " (Integer)");
 System.out.println(i + " / " + d + " = " + (i / d));
 System.out.println(i + " / " + d + " = " +
 (int)(i / d) + " (Integer)");
 }
 } // End of class

Table of Contents

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Table of Contents

APPENDIX B
Simple Text JDBC Driver Source Code

You had a look at the SimpleText JDBC driver developed in Chapter 10. This appendix has the complete source code
for three of its main classes: SimpleTextDriver, SimpleTextConnection, and SimpleTextStatment. The
SimpleTextResultSet, SimpleTextObject, and other SimpleText driver classes’ source code can be found on the CD-
ROM or on the book’s Web site. The primary purpose of this appendix is to serve as a reference while you are reading or
reviewing Chapter 10, as well as to detail the inner workings of a JDBC driver.

Listing B.1 SimpleTextDriver.java.

//---
//
// Module: SimpleTextDriver.java
//
// Description: Implementation of the JDBC Driver
// interface
//
// Author: Karl Moss
//
// Copyright: (C) 1996 Karl Moss. All rights reserved.
// You may study, use, modify, and distribute
// this example for any purpose, provided
// that this copyright notice appears in
// all copies. This example is provided
// WITHOUT WARRANTY, either expressed or implied.
//---
package jdbc.SimpleText;

//---
// The Java SQL framework allows for multiple database drivers.
//
// Each driver should supply a driver class that implements
// the Driver interface.
//
// The DriverManager will try to load as many drivers as it can
// find and then for any given connection request, it will ask each
// driver in turn to try to connect to the target URL.
//
// It is strongly recommended that each Driver class should be
// small and standalone so that the Driver class can be loaded and
// queried without bringing in vast quantities of supporting code.
//
// When a Driver object is instantiated, it should register itself
// with the SQL framework by calling DriverManager.registerDriver.

//
// Note: Each driver must support a null constructor so it can be
// instantiated by doing:
//
// java.sql.Driver d = Class.forName("foo.bah.Driver").newInstance();
//---
// NOTE - this is an implementation of the JDBC API version 1.00
//---
import java.sql.*;

public class SimpleTextDriver
 extends SimpleTextObject
 implements java.sql.Driver
{
 //---
 // SimpleTextDriver
 // Constructor. Attempt to register the JDBC driver.
 //---
 public SimpleTextDriver()
 throws SQLException
 {
 // Attempt to register this driver with the JDBC DriverManager.
 // If it fails, an exception will be thrown.

 DriverManager.registerDriver (this);
 }
 //---
 // connect - JDBC API
 //
 // Try to make a database connection to the given URL.
 // The driver should return "null" if it realizes it is the wrong
 // kind of driver to connect to the given URL. This will be common,
 // as when the JDBC driver manager is asked to connect to a given
 // URL, it passes the URL to each loaded driver in turn.
 //
 // The driver should raise a SQLException if it is the right
 // driver to connect to the given URL, but has trouble connecting to
 // the database.
 //
 // The java.util.Properties argument can be used to pass arbitrary
 // string tag/value pairs as connection arguments.
 // Normally, at least a "user" and "password" property should be
 // included in the Properties.
 //
 // url The URL of the database to connect to.
 //
 // info a list of arbitrary string tag/value pairs as
 // connection arguments; normally, at least a "user" and
 // "password" property should be included.
 //
 // Returns a Connection to the URL.
 //---
 public Connection connect(
 String url,
 java.util.Properties info)
 throws SQLException
 {
 if (traceOn()) {
 trace("@connect (url=" + url + ")");

 }

 // Ensure that we can understand the given url
 if (!acceptsURL(url)) {
 return null;
 }

 // For typical JDBC drivers, it would be appropriate to check
 // for a secure environment before connecting, and deny access
 // to the driver if it is deemed to be unsecure. For the
 // SimpleText driver, if the environment is not secure, we will
 // turn it into a read-only driver.

 // Create a new SimpleTextConnection object

 SimpleTextConnection con = new SimpleTextConnection();

 // Initialize the new object

 con.initialize (this, info);

 return con;
 }
 //---
 // acceptsURL - JDBC API
 //
 // Returns true if the driver thinks that it can open a connection
 // to the given URL. Typically, drivers will return true if they
 // understand the subprotocol specified in the URL, and false if
 // they don't.
 //
 // url The URL of the database.
 //
 // Returns true if this driver can connect to the given URL.
 //---
 public boolean acceptsURL(
 String url)
 throws SQLException
 {
 if (traceOn()) {
 trace("@acceptsURL (url=" + url + ")");
 }

 boolean rc = false;
 // Get the subname from the url. If the url is not valid for
 // this driver, a null will be returned.

 if (getSubname(url) != null) {
 rc = true;
 }

 if (traceOn()) {
 trace(" " + rc);
 }
 return rc;
 }
 //---
 // getPropertyInfo - JDBC API

 //
 // The getPropertyInfo method is intended to allow a generic GUI tool
 // to discover what properties it should prompt a human for in order
 // to get enough information to connect to a database. Note that
 // depending on the values the human has supplied so far, additional
 // values may become necessary, so it may be necessary to iterate
 // though several calls to getPropertyInfo.
 //
 // url The URL of the database to connect to.
 //
 // info A proposed list of tag/value pairs that will be sent on
 // connect open.
 //
 // Returns an array of DriverPropertyInfo objects describing possible
 // properties. This array may be an empty array if no
 // properties are required.
 //---
 public DriverPropertyInfo[] getPropertyInfo(
 String url,
 java.util.Properties info)
 throws SQLException
 {
 DriverPropertyInfo prop[];
 // Only one property required for the SimpleText driver; the
 // directory. Check the property list coming in. If the
 // directory is specified, return an empty list.
 if (info.getProperty("Directory") == null) {

 // Setup the DriverPropertyInfo entry

 prop = new DriverPropertyInfo[1];
 prop[0] = new DriverPropertyInfo("Directory", null);
 prop[0].description = "Initial text file directory";
 prop[0].required = false;
 }
 else {
 // Create an empty list

 prop = new DriverPropertyInfo[0];
 }

 return prop;
 }

 // --
 // getMajorVersion - JDBC API
 //
 // Get the driver's major version number. Initially this should be 1.
 // --
 public int getMajorVersion()
 {
 return SimpleTextDefine.MAJOR_VERSION;
 }

 // --
 // getMinorVersion - JDBC API
 //
 // Get the driver's minor version number. Initially this should be 0.
 // --

 public int getMinorVersion()
 {
 return SimpleTextDefine.MINOR_VERSION;
 }
 // --
 // jdbcCompliant - JDBC API
 //
 // Report whether the Driver is a genuine JDBC COMPLIANT (tm) driver.
 // A driver may only report "true" here if it passes the JDBC
 // compliance tests, otherwise it is required to return false.
 //
 // JDBC compliance requires full support for the JDBC API and full
 // support for SQL-92 Entry Level. It is expected that JDBC
 // compliant drivers will be available for all the major commercial
 // databases.
 //
 // This method is not intended to encourage the development of non-
 // JDBC compliant drivers, but is a recognition of the fact that some
 // vendors are interested in using the JDBC API and framework for
 // lightweight databases that do not support full database
 // functionality, or for special databases, such as document
 // information retrieval, where a SQL implementation may not be
 // feasible.
 // --
 public boolean jdbcCompliant()
 {
 // The SimpleText driver is not JDBC compliant

 return false;
 }
 // --
 // getSubname
 // Given a URL, return the subname. Returns null if the protocol is
 // not 'jdbc' or the subprotocol is not 'simpletext'.
 // --
 public String getSubname(
 String url)
 {
 String subname = null;
 String protocol = "JDBC";
 String subProtocol = "SIMPLETEXT";

 // Convert to upper case and trim all leading and trailing
 // blanks.

 url = (url.toUpperCase()).trim();
 // Make sure the protocol is jdbc:

 if (url.startsWith(protocol)) {

 // Strip off the protocol

 url = url.substring (protocol.length());

 // Look for the colon

 if (url.startsWith(":")) {
 url = url.substring(1);

 // Check the subprotocol

 if (url.startsWith (subProtocol)) {

 // Strip off the subprotocol, leaving the subname

 url = url.substring(subProtocol.length());

 // Look for the colon that separates the subname
 // from the subprotocol (or the fact that there
 // is no subprotocol at all).

 if (url.startsWith(":")) {
 subname = url.substring(subProtocol.length());
 }
 else if (url.length() == 0) {
 subname = "";
 }
 }
 }
 }
 return subname;
 }
}

Listing B.2 SimpleTextConnection.java.

// --
//
// Module: SimpleTextConnection.java
//
// Description: Implementation of the JDBC Connection interface
//
// Author: Karl Moss
//
// Copyright: (C) 1996 Karl Moss. All rights reserved.
// You may study, use, modify, and distribute this example
// for any purpose, provided that this copyright notice
// appears in all copies. This example is provided WITHOUT
// WARRANTY, either expressed or implied.
// --

package jdbc.SimpleText;

// --
// A Connection represents a session with a specific
// database. Within the context of a Connection, SQL statements are
// executed and results are returned.
//
// A Connection's database is able to provide information
// describing its tables, its supported SQL grammar, its stored
// procedures, the capabilities of this connection, etc. This
// information is obtained with the getMetaData method.
//
// Note: By default, the Connection automatically commits
// changes after executing each statement. If auto commit has been
// disabled, an explicit commit must be done or database changes will

// not be saved.
// --
// NOTE - this is an implementation of the JDBC API version 1.00
// --

import java.sql.*;
import java.io.*;
import java.util.Hashtable;
import java.util.StringTokenizer;

public class SimpleTextConnection
 extends SimpleTextObject
 implements SimpleTextIConnection
{
 //---
 // initialize
 // Initialize the Connection object.
 //---
 public void initialize (
 Driver driver,
 java.util.Properties info)
 throws SQLException
 {
 // Save the owning driver object

 ownerDriver = driver;

 // Get the security manager and see if we can write to a file.
 // If no security manager is present, assume that we are a
 // trusted application and have read/write privileges.

 canWrite = false;

 SecurityManager securityManager = System.getSecurityManager ();

 if (securityManager != null) {
 try {
 // Use some arbitrary file to check for file write
 // privileges.

 securityManager.checkWrite ("SimpleText_Foo");

 // Flag is set if no exception is thrown

 canWrite = true;
 }

 // If we can't write, an exception is thrown. We'll catch
 // it and do nothing.

 catch (SecurityException ex) {
 }
 }
 else {
 canWrite = true;
 }
 // Set our initial read-only flag

 setReadOnly(!canWrite);

 // Get the directory. It will either be supplied in the property
 // list, or we'll use our current default.

 String s = info.getProperty("Directory");

 if (s == null) {
 s = System.getProperty("user.dir");
 }

 setCatalog(s);
 }

 // --
 // createStatement - JDBC API
 //
 // SQL statements without parameters are normally
 // executed using Statement objects. If the same SQL statement
 // is executed many times, it is more efficient to use a
 // PreparedStatement.
 //
 // Returns a new Statement object.
 // --

 public Statement createStatement()
 throws SQLException
 {
 if (traceOn()) {
 trace("Creating new SimpleTextStatement");
 }

 // Create a new Statement object

 SimpleTextStatement stmt = new SimpleTextStatement();

 // Initialize the statement

 stmt.initialize (this);

 return stmt;
 }
 // --
 // prepareStatement - JDBC API
 //
 // A SQL statement with or without IN parameters can be
 // pre-compiled and stored in a PreparedStatement object. This
 // object can then be used to efficiently execute this statement
 // multiple times.
 //
 // Note: This method is optimized for handling
 // parametric SQL statements that benefit from precompilation. If
 // the driver supports precompilation, prepareStatement will send
 // the statement to the database for precompilation. Some drivers
 // may not support precompilation. In this case, the statement may
 // not be sent to the database until the PreparedStatement is
 // executed. This has no direct affect on users; however, it does
 // affect which method throws certain SQLExceptions.
 //

 // sql a SQL statement that may contain one or more '?' IN
 // parameter placeholders.
 //
 // Returns a new PreparedStatement object containing the
 // pre-compiled statement.
 // --
 public PreparedStatement prepareStatement(
 String sql)
 throws SQLException
 {
 if (traceOn()) {
 trace("@prepareStatement (sql=" + sql + ")");
 }

 // Create a new PreparedStatement object

 SimpleTextPreparedStatement ps = new
 SimpleTextPreparedStatement();

 // Initialize the PreparedStatement

 ps.initialize(this, sql);

 return ps;

 }
 // --
 // prepareCall - JDBC API
 //
 // A SQL stored procedure call statement is handled by creating a
 // CallableStatement for it. The CallableStatement provides
 // methods for setting up its IN and OUT parameters, and
 // methods for executing it.
 //
 // Note: This method is optimized for handling stored
 // procedure call statements. Some drivers may send the call
 // statement to the database when the prepareCall is done; others
 // may wait until the CallableStatement is executed. This has no
 // direct affect on users; however, it does affect which method
 // throws certain SQLExceptions.
 //
 // sql a SQL statement that may contain one or more '?'
 // parameter placeholders.
 //
 // Returns a new CallableStatement object containing the
 // pre-compiled SQL statement.
 // --
 public CallableStatement prepareCall(
 String sql)
 throws SQLException
 {
 if (traceOn()) {
 trace("@prepareCall (sql=" + sql + ")");
 }
 // The SimpleText driver does not support callable statements

 throw new SQLException("Driver does not support this function");
 }

 // --
 // nativeSQL - JDBC API
 //
 // A driver may convert the JDBC sql grammar into its system's
 // native SQL grammar prior to sending it; nativeSQL returns the
 // native form of the statement that the driver would have sent.
 //
 // sql a SQL statement that may contain one or more '?'
 // parameter placeholders.
 //
 // Returns the native form of this statement.
 // --
 public String nativeSQL(
 String sql)
 throws SQLException
 {

 // For the SimpleText driver, simply return the original
 // sql statement. Other drivers will need to expand escape
 // sequences here.

 return sql;
 }

 // --
 // setAutoCommit - JDBC API
 //
 // If a connection is in auto-commit mode, then all its SQL
 // statements will be executed and committed as individual
 // transactions. Otherwise, its SQL statements are grouped into
 // transactions that are terminated by either commit() or
 // rollback(). By default, new connections are in auto-commit
 // mode.
 //
 // autoCommit true enables auto-commit; false disables
 // auto-commit.
 // --
 public void setAutoCommit(
 boolean autoCommit)
 throws SQLException
 {
 if (traceOn()) {
 trace("@setAutoCommit (autoCommit=" + autoCommit + ")");
 }

 // The SimpleText driver is always in auto-commit mode (it does
 // not support transactions). Throw an exception if an attempt
 // is made to change the mode.

 if (autoCommit == false) {
 throw DriverNotCapable();
 }
 }

 // --
 // getAutoCommit - JDBC API
 //
 // Get the current auto-commit state.

 // Returns the current state of auto-commit mode.
 // --
 public boolean getAutoCommit()
 throws SQLException
 {
 // The SimpleText driver is always in auto-commit mode (it does
 // not support transactions).

 return true;
 }

 // --
 // commit - JDBC API
 //
 // Commit makes all changes made since the previous
 // commit/rollback permanent and releases any database locks
 // currently held by the Connection.
 // --
 public void commit()
 throws SQLException
 {
 // No-op for the SimpleText driver
 }

 // --
 // rollback - JDBC API
 //
 // Rollback drops all changes made since the previous
 // commit/rollback and releases any database locks currently held
 // by the Connection.
 // --
 public void rollback()
 throws SQLException
 {
 // No-op for the SimpleText driver
 }

 // --
 // close - JDBC API
 //
 // In some cases, it is desirable to immediately release a
 // Connection's database and JDBC resources instead of waiting for
 // them to be automatically released; the close method provides this
 // immediate release.
 // --
 public void close()
 throws SQLException
 {
 connectionClosed = true;
 }

 // --
 // isClosed - JDBC API
 //
 // Check if a Connection is closed.
 // --
 public boolean isClosed()
 throws SQLException
 {

 return connectionClosed;
 }

 // --
 // getMetaData - JDBC API
 //
 // A Connection's database is able to provide information
 // describing its tables, its supported SQL grammar, its stored
 // procedures, the capabilities of this connection, etc. This
 // information is made available through a DatabaseMetaData
 // object.
 //
 // Returns a DatabaseMetaData object for this Connection.
 // --
 public DatabaseMetaData getMetaData()
 throws SQLException
 {
 SimpleTextDatabaseMetaData dbmd = new SimpleTextDatabaseMetaData
 ();

 dbmd.initialize(this);

 return dbmd;
 }

 // --
 // setReadOnly - JDBC API
 //
 // You can put a connection in read-only mode as a hint to enable
 // database optimizations.
 //
 // Note: setReadOnly cannot be called while in the
 // middle of a transaction.
 // --
 public void setReadOnly(
 boolean readOnly)
 throws SQLException.
 {
 // If we are trying to set the connection not read only (allowing
 // writes), and this connection does not allow writes, throw
 // an exception.

 if ((readOnly == false) &&
 (canWrite == false)) {
 throw DriverNotCapable();
 }

 // Set the readOnly attribute for the SimpleText driver. If set,
 // the driver will not allow updates or deletes to any text file.

 this.readOnly = readOnly;
 }

 // --
 // isReadOnly - JDBC API
 //
 // Test if the connection is in read-only mode.
 // --

 public boolean isReadOnly()
 throws SQLException
 {
 return readOnly;
 }

 // --
 // setCatalog - JDBC API
 //
 // A sub-space of this Connection's database may be selected by
 // setting a catalog name. If the driver does not support catalogs, it
 // will silently ignore this request.
 // --

 public void setCatalog(String catalog)
 throws SQLException
 {
 if (traceOn()) {
 trace("@setCatalog(" + catalog + ")");
 }

 // If the last character is a separator, remove it

 if (catalog.endsWith("/") ||
 catalog.endsWith("\\")) {
 catalog = catalog.substring(0, catalog.length());
 }

 // Make sure this is a directory

 File dir = new File(catalog);

 if (!dir.isDirectory()) {
 throw new SQLException("Invalid directory: " + catalog);
 }

 this.catalog = catalog;
 }

 // --
 // getCatalog
 // Returns the Connection's current catalog name.
 // --

 public String getCatalog()
 throws SQLException
 {
 return catalog;
 }

 // --
 // setTransactionIsolation - JDBC API
 //
 // You can call this method to try to change the transaction
 // isolation level on a newly opened connection, using one of the
 // TRANSACTION_* values.
 //
 // level one of the TRANSACTION_* isolation values with the
 // exception of TRANSACTION_NONE; some databases may not

 // support other values.
 // --

 public void setTransactionIsolation(
 int level)
 throws SQLException
 {
 if (traceOn()) {
 trace("@setTransactionIsolation (level=" + level + ")");
 }

 // Throw an exception if the transaction isolation is being
 // changed to something different.

 if (level != TRANSACTION_NONE) {
 throw DriverNotCapable();
 }
 }

 // --
 // getTransactionIsolation - JDBC API
 //
 // Get this Connection's current transaction isolation mode
 // --
 public int getTransactionIsolation()
 throws SQLException
 {
 // The SimpleText driver does not support transactions

 return TRANSACTION_NONE;
 }

 // --
 // setAutoClose - JDBC API
 //
 // When a Connection is in auto-close mode, all its
 // PreparedStatements, CallableStatements, and ResultSets will be
 // closed when a transaction is committed or rolled back. By
 // default, a new Connection is in auto-close mode.
 //
 // When auto-close is disabled, JDBC attempts to keep
 // all statements and ResultSets open across commits and
 // rollbacks. However, the actual behaviour will vary depending
 // on what the underlying database supports. Some databases
 // allow these objects to remain open across commits, whereas
 // other databases insist on closing them.
 //
 // autoClose true enables auto-close, false disables
 // auto-close.
 // --

 public void setAutoClose(
 boolean autoClose)
 throws SQLException
 {
 if (traceOn()) {
 trace("@setAutoClose (autoClose=" + autoClose + ")");
 }

 // If autoClose is being turned off, throw an exception; we can't
 // handle it.

 if (autoClose == false) {
 throw DriverNotCapable();
 }
 }
 // --

 // getAutoClose - JDBC API
 //
 // Gets the current auto-close state.
 // --

 public boolean getAutoClose()
 throws SQLException
 {
 // Always true for the SimpleText driver

 return true;
 }

 // --
 // getWarnings - JDBC API
 //
 // The first warning reported by calls on this Connection is
 // returned.
 //
 // Note: Subsequent warnings will be chained to this SQLWarning.
 // --

 public SQLWarning getWarnings()
 throws SQLException
 {
 // No warnings exist for the SimpleText driver. Always return
 // null.

 return null;
 }

 // --
 // clearWarnings - JDBC API
 //
 // After this call, getWarnings returns null until a new warning is
 // reported for this Connection.
 // --

 public void clearWarnings()
 throws SQLException
 {
 // No-op
 }
 //---
 // parseSQL
 // Given a sql statement, parse it and return a String array with
 // each keyword. This is a VERY simple parser.
 // --
 public String[] parseSQL(
 String sql)

 {
 String keywords[] = null;

 // Create a new Hashtable to keep our words in. This way, we can
 // build the Hashtable as we go, then create a String array
 // once we know how many words are present.

 java.util.Hashtable table = new java.util.Hashtable();
 int count = 0;
 // Current offset in the sql string

 int offset = 0;

 // Get the first word from the sql statement

 String word = parseWord(sql.substring(offset));

 // Loop while more words exist in the sql string

 while (word.length() > 0) {

 // Increment the offset pointer

 offset += word.length();

 // Trim all leading and trailing spaces

 word = word.trim();

 if (word.length() > 0) {

 // Put the word in our hashtable

 table.put(new Integer(count), word);
 count++;
 }

 // Get the next word

 word = parseWord(sql.substring(offset));
 }

 // Create our new String array with the proper number of elements

 keywords = new String[count];

 // Copy the words from the Hashtable to the String array

 for (int i = 0; i < count; i++) {
 keywords[i] = (String) table.get(new Integer(i));
 }
 return keywords;
 }
 // --
 // getTables
 // Given a directory and table pattern, return a Hashtable containing
 // SimpleTextTable entries.
 // --

 public Hashtable getTables(
 String dir,
 String table)
 {
 Hashtable list = new Hashtable();

 // Create a FilenameFilter object. This object will only allow
 // files with the .SDF extension to be seen.

 FilenameFilter filter = new SimpleTextEndsWith(
 SimpleTextDefine.DATA_FILE_EXT);

 File file = new File(dir);

 if (file.isDirectory()) {

 // List all of the files in the directory with the .SDF
 // extension.

 String entries[] = file.list(filter);
 SimpleTextTable tableEntry;

 // Create a SimpleTextTable entry for each, and put in
 // the Hashtable.

 for (int i = 0; i < entries.length; i++) {

 // A complete driver needs to further filter the table
 // name here.

 tableEntry = new SimpleTextTable(dir, entries[i]);
 list.put(new Integer(i), tableEntry);
 }
 }

 return list;
 }

 // --
 // getColumns
 // Given a directory and table name, return a Hashtable containing
 // SimpleTextColumn entries. Returns null if the table is not found.
 // --
 public Hashtable getColumns(
 String dir,
 String table)
 {
 Hashtable list = new Hashtable();

 // Create the full path to the table

 String fullPath = dir + "/" + table +
 SimpleTextDefine.DATA_FILE_EXT;

 File f = new File (fullPath);

 // If the file does not exist, return null

 if (!f.exists()) {
 if (traceOn()) {
 trace("File does not exist: " + fullPath);
 }
 return null;
 }

 String line = "";

 // Create a random access object and read the first line.
 // Create the table.

 try {
 RandomAccessFile raf = new RandomAccessFile(f, "r");

 // Read the first line, which is the column definitions

 line = raf.readLine();

 }
 catch (IOException ex) {
 if (traceOn()) {
 trace("Unable to read file: " + fullPath);
 }
 return null;
 }

 // Now, parse the line. First, check for the branding

 if (!line.startsWith(SimpleTextDefine.DATA_FILE_EXT)) {
 if (traceOn()) {
 trace("Invalid file format: " + fullPath);
 }
 return null;
 }

 line = line.substring(SimpleTextDefine.DATA_FILE_EXT.length());

 // Now we can use the StringTokenizer, since we know that the
 // column names can't contain data within quotes (this is why
 // we can't use the StringTokenizer with SQL statements).

 StringTokenizer st = new StringTokenizer(line, ",");

 String columnName;
 int columnType;
 int precision;
 SimpleTextColumn column;
 int count = 0;
 boolean searchable;
 int displaySize;
 String typeName;

 // Loop while more tokens exist

 while (st.hasMoreTokens()) {
 columnName = (st.nextToken()).trim();

 if (columnName.length() == 0) {
 continue;
 }

 if (columnName.startsWith(SimpleTextDefine.COL_TYPE_NUMBER))
 {
 columnType = Types.INTEGER;
 precision = SimpleTextDefine.MAX_INTEGER_LEN;
 columnName = columnName.substring(
 SimpleTextDefine.COL_TYPE_NUMBER.length());
 displaySize = precision;
 typeName = "VARCHAR";
 searchable = true;
 }
 else if (columnName.startsWith(SimpleTextDefine.
 COL_TYPE_BINARY)) {
 columnType = Types.VARBINARY;
 precision = SimpleTextDefine.MAX_VARBINARY_LEN;
 columnName = columnName.substring(
 SimpleTextDefine.COL_TYPE_BINARY.length());
 displaySize = precision * 2;
 typeName = "BINARY";
 searchable = false;
 } else {
 columnType = Types.VARCHAR;
 precision = SimpleTextDefine.MAX_VARCHAR_LEN;
 searchable = true;
 displaySize = precision;
 typeName = "NUMBER";
 }

 // Create a new column object and add to the Hashtable

 column = new SimpleTextColumn(columnName, columnType,
 precision);
 column.searchable = searchable;
 column.displaySize = displaySize;
 column.typeName = typeName;

 // The column number will be 1-based

 count++;

 // Save the absolute column number

 column.colNo = count;

 list.put(new Integer(count), column);
 }

 return list;
 }

 // --
 // getDirectory
 // Given a directory filter (which may be null), format the directory
 // to use in a search. The default connection directory may be
 // returned.
 // --

 public String getDirectory(
 String directory)
 {
 String dir;

 if (directory == null) {
 dir = catalog;
 }
 else if (directory.length() == 0) {
 dir = catalog;
 }
 else {
 dir = directory;
 if (dir.endsWith("/") ||
 dir.endsWith("\\")) {
 dir = dir.substring(0, dir.length());
 }
 }

 return dir;
 }

 protected Driver ownerDriver; // Pointer to the owning
 // Driver object

 protected boolean connectionClosed; // True if the connection
 // is currently closed

 protected boolean readOnly; // True if the connection
 // is read-only

 protected boolean canWrite; // True if we are able to
 // write to files

 protected String catalog; // Current catalog
 // (qualifier) for text files
}
// --
// This class is a simple FilenameFilter. It defines the required
// accept() method to determine whether a specified file should be listed.
// A file will be listed if its name ends with the specified extension.
// --

class SimpleTextEndsWith
 implements FilenameFilter
{
 public SimpleTextEndsWith(
 String extension)
 {
 ext = extension;
 }

 public boolean accept(
 File dir,
 String name)
 {
 if (name.endsWith(ext)) {

 return true;
 }
 return false;
 }

 protected String ext;
}

Listing B.3 SimpleTextStatement.java.

// --
//
// Module: SimpleTextStatement.java
//
// Description: Implementation of the JDBC Statement interface
//
// Author: Karl Moss
//
// Copyright: (C) 1996 Karl Moss. All rights reserved.
// You may study, use, modify, and distribute this example
// for any purpose, provided that this copyright notice
// appears in all copies. This example is provided WITHOUT
// WARRANTY, either expressed or implied.
// --

package jdbc.SimpleText;
// --
// A Statement object is used for executing a static SQL statement
// and obtaining the results produced by it.
//
// Only one ResultSet per Statement can be open at any point in
// time. Therefore, if the reading of one ResultSet is interleaved with
// the reading of another, each must have been generated by different
// Statements.
// --
// NOTE - this is an implementation of the JDBC API version 1.00
// --

import java.sql.*;
import java.util.Hashtable;
import java.io.*;

public class SimpleTextStatement
 extends SimpleTextObject
 implements SimpleTextIStatement
{

 // --
 // initialize
 // --

 public void initialize(
 SimpleTextIConnection con)
 throws SQLException
 {
 // Save the owning connection object

 ownerConnection = con;

 }

 // --
 // executeQuery - JDBC API
 //
 // Execute a SQL statement that returns a single ResultSet.
 //
 // sql typically this is a static SQL SELECT statement.
 //
 // Returns the table of data produced by the SQL statement.
 // --
 public ResultSet executeQuery(
 String sql)
 throws SQLException
 {
 if (traceOn()) {
 trace("@executeQuery(" + sql + ")");
 }

 java.sql.ResultSet rs = null;

 // Execute the query. If execute returns true, then a result set
 // exists.

 if (execute(sql)) {
 rs = getResultSet();
 }

 return rs;
 }

 // --
 // executeUpdate - JDBC API
 //
 // Execute a SQL INSERT, UPDATE, or DELETE statement. In addition,
 // SQL statements that return nothing, such as SQL DDL statements,
 // can be executed.
 //
 // sql a SQL INSERT, UPDATE, or DELETE statement or a SQL
 // statement that returns nothing.
 //
 // Returns either the row count for INSERT, UPDATE, or DELETE; or 0
 // for SQL statements that return nothing.
 // --

 public int executeUpdate(
 String sql)
 throws SQLException
 {
 if (traceOn()) {
 trace("@executeUpdate(" + sql + ")");
 }

 int count = -1;

 // Execute the query. If execute returns false, then an update
 // count exists.
 if (execute(sql) == false) {
 count = getUpdateCount();

 }

 return count;
 }

 // --
 // close - JDBC API
 //
 // In many cases, it is desirable to immediately release a
 // Statements' database and JDBC resources instead of waiting for
 // this to happen when it is automatically closed; the close
 // method provides this immediate release.
 //
 // Note: A Statement is automatically closed when it is
 // garbage collected. When a Statement is closed, its current
 // ResultSet, if one exists, is also closed.
 // --
 public void close()
 throws SQLException
 {
 // If we have a current result set, close it

 if (currentResultSet != null) {
 currentResultSet.close();
 currentResultSet = null;
 }
 }

 // --
 // getMaxFieldSize - JDBC API
 //
 // The maxFieldSize limit (in bytes) is the maximum amount of data
 // returned for any column value; it only applies to BINARY,
 // VARBINARY, LONGVARBINARY, CHAR, VARCHAR, and LONGVARCHAR
 // columns. If the limit is exceeded, the excess data is silently
 // discarded.
 //
 // Returns the current max column size limit; zero means unlimited.
 // --
 public int getMaxFieldSize()
 throws SQLException
 {
 // The SimpleText driver does not have a limit on size

 return 0;
 }

 // --
 // setMaxFieldSize - JDBC API
 //
 // The maxFieldSize limit (in bytes) is set to limit the size of
 // data that can be returned for any column value; it only applies
 // to BINARY, VARBINARY, LONGVARBINARY, CHAR, VARCHAR, and
 // LONGVARCHAR fields. If the limit is exceeded, the excess data
 // is silently discarded.
 //
 // max the new max column size limit; zero means unlimited.
 // --

 public void setMaxFieldSize(
 int max)
 throws SQLException
 {
 // The SimpleText driver does not allow the maximum field size to
 // be set.

 if (max != 0) {
 throw DriverNotCapable();
 }
 }
 // --
 // getMaxRows - JDBC API
 //
 // The maxRows limit is the maximum number of rows that a
 // ResultSet can contain. If the limit is exceeded, the excess
 // rows are silently dropped.
 //
 // Returns the current max row limit; zero means unlimited.
 // --
 public int getMaxRows()
 throws SQLException
 {
 // The SimpleText driver does not have a limit on the number
 // of rows that can be returned.
 return 0;
 }

 // --
 // setMaxRows - JDBC API
 //
 // The maxRows limit is set to limit the number of rows that any
 // ResultSet can contain. If the limit is exceeded, the excess
 // rows are silently dropped.
 //
 // max the new max rows limit; zero means unlimited.
 // --

 public void setMaxRows(
 int max)
 throws SQLException
 {
 // The SimpleText driver does not allow the maximum number of
 // rows to be set.

 if (max != 0) {
 throw DriverNotCapable();
 }
 }

 // --
 // setEscapeProcessing - JDBC API
 //
 // If escape scanning is on (the default), the driver will do
 // escape substitution before sending the SQL to the database.
 //
 // enable true to enable; false to disable.
 // --
 public void setEscapeProcessing(

 boolean enable)
 throws SQLException
 {
 // The SimpleText driver does not support escape sequence
 // expansion.
 if (enable) {
 throw DriverNotCapable();
 }
 }
 // --
 // getQueryTimeout - JDBC API
 //
 // The queryTimeout limit is the number of seconds the driver will
 // wait for a Statement to execute. If the limit is exceeded, a
 // SQLException is thrown.
 //
 // Returns the current query timeout limit in seconds; zero means
 // unlimited.
 // --

 public int getQueryTimeout()
 throws SQLException
 {
 // The SimpleText driver does not have a query timeout

 return 0;
 }

 // --
 // setQueryTimeout - JDBC API
 //
 // The queryTimeout limit is the number of seconds the driver will
 // wait for a Statement to execute. If the limit is exceeded, a
 // SQLException is thrown.
 //
 // seconds the new query timeout limit in seconds; zero means
 // unlimited.
 // --

 public void setQueryTimeout(
 int seconds)
 throws SQLException
 {
 // The SimpleText driver does not support query timeouts

 if (seconds != 0) {
 throw DriverNotCapable();
 }
 }
 // --
 // cancel - JDBC API
 //
 // Cancel can be used by one thread to cancel a statement that
 // is being executed by another thread.
 // --
 public void cancel()
 throws SQLException
 {

 // No-op for the SimpleText driver
 }

 // --
 // getWarnings - JDBC API
 //
 // The first warning reported by calls on this Statement is returned.
 // A Statment's execute methods clear its SQLWarning chain.
 // Subsequent Statement warnings will be chained to this SQLWarning.
 //
 // Note: The warning chain is automatically cleared each time
 // a statement is (re)executed.
 //
 // Note: If you are processing a ResultSet, then any
 // warnings associated with ResultSet reads will be chained on the
 // ResultSet object.
 //
 // Returns the first SQLWarning or null.
 // --

 public SQLWarning getWarnings()
 throws SQLException
 {
 return lastWarning;
 }

 // --
 // clearWarnings - JDBC API
 //
 // After this call, getWarnings returns null until a new warning is
 // reported for this Statement.
 // --

 public void clearWarnings()
 throws SQLException
 {
 setWarning(null);
 }

 // --
 // setWarning
 // Sets the given SQLWarning in the warning chain. If null, the
 // chain is reset.
 // --
 protected void setWarning(
 SQLWarning warning)
 {
 if (warning == null) {
 lastWarning = null;
 }
 else {
 SQLWarning chain = lastWarning;

 // Find the end of the chain

 while (chain.getNextWarning() != null) {
 chain = chain.getNextWarning();
 }

 // We're at the end of the chain. Add the new warning

 chain.setNextWarning(warning);
 }
 }

 // --
 // setCursorName - JDBC API
 //
 // setCursorname defines the SQL cursor name that will be used by
 // subsequent Statement execute methods. This name can then be
 // used in SQL positioned update/delete statements to identify the
 // current row in the ResultSet generated by this statement. If
 // the database doesn't support positioned update/delete, this
 // method is a no-op.
 //
 // Note: By definition, positioned update/delete
 // execution must be done by a different Statement than the one
 // which generated the ResultSet being used for positioning. Also,
 // cursor names must be unique within a Connection.
 //
 // name the new cursor name.
 // --

 public void setCursorName(
 String name)
 throws SQLException
 {
 // The SimpleText driver does not support positioned updates.
 // Per the spec, this is a no-op.
 }
 // --
 // execute - JDBC API
 //
 // Execute a SQL statement that may return multiple results.
 // Under some (uncommon) situations, a single SQL statement may return
 // multiple result sets and/or update counts. Normally, you can
 // ignore this, unless you're executing a stored procedure that you
 // know may return multiple results, or unless you're dynamically
 // executing an unknown SQL string. The "execute", "getMoreResults",
 // "getResultSet"and "getUpdateCount" methods let you navigate
 // through multiple results.
 //
 // The "execute" method executes a SQL statement and indicates the
 // form of the first result. You can then use getResultSet or
 // getUpdateCount to retrieve the result, and getMoreResults to
 // move to any subsequent result(s).
 //
 // sql any SQL statement.
 //
 // Returns true if the first result is a ResultSet; false if it is an
 // integer.
 // --

 public boolean execute(
 String sql)
 throws SQLException
 {

 resultSetColumns = null;

 // Convert the SQL statement into native syntax

 sql = ownerConnection.nativeSQL(sql);
 // Save the SQL statement

 sqlStatement = sql;

 // First, parse the sql statement into a String array

 parsedSQL = ownerConnection.parseSQL(sql);

 // Now, validate the SQL statement and execute it.
 // Returns true if a result set exists.

 boolean rc = prepare(false);

 return rc;
 }

 // --
 // getResultSet - JDBC API
 //
 // Returns the current result as a ResultSet. It
 // should only be called once per result.
 //
 // Returns the current result as a ResultSet; null if it is an
 // integer.
 // --
 public ResultSet getResultSet()
 throws SQLException
 {
 // If there are no columns to be returned, return null

 if (resultSetColumns == null) {
 return null;
 }

 SimpleTextResultSet rs = new SimpleTextResultSet();

 rs.initialize(this, resultSetCatalog, resultSetTable,
 resultSetColumns, resultSetFilter);

 // Save our current result set

 currentResultSet = rs;

 return rs;
 }

 // --
 // getUpdateCount - JDBC API
 //
 // getUpdateCount returns the current result, which should be an
 // integer value. It should only be called once per result.
 //
 // The only way to tell for sure that the result is an update
 // count is to first test to see if it is a ResultSet. If it is

 // not a ResultSet, it is an update count.
 //
 // Returns the current result as an integer; zero if it is a
 // ResultSet.
 // --
 public int getUpdateCount()
 throws SQLException
 {
 return updateCount;
 }

 // --
 // getMoreResults - JDBC API
 //
 // getMoreResults moves to a Statement's next result. It returns
 // true if this result is a ResultSet. getMoreResults also
 // implicitly closes any current ResultSet obtained with
 // getResultSet.
 //
 // Returns true if the next result is a ResultSet; false if it is an
 // integer.
 // --

 public boolean getMoreResults()
 throws SQLException
 {
 // The SimpleText driver does not support multiple result sets

 throw DriverNotCapable();
 }

 // --
 // getStatementType
 // Given a parsed SQL statement (in a String array), determine the
 // type of sql statement present. If the sql statement is not known,
 // an exception is raised.
 // --

 public int getStatementType(
 String sql[])
 throws SQLException
 {
 int type = 0;

 // There are no sql statements with less than 2 words

 if (sql.length < 2) {
 throw new SQLException("Invalid SQL statement");
 }

 if (sql[0].equalsIgnoreCase("SELECT")) {
 type = SimpleTextDefine.SQL_SELECT;
 }
 else if (sql[0].equalsIgnoreCase("INSERT")) {
 type = SimpleTextDefine.SQL_INSERT;
 }
 else if (sql[0].equalsIgnoreCase("CREATE")) {
 type = SimpleTextDefine.SQL_CREATE;

 }
 else if (sql[0].equalsIgnoreCase("DROP")) {
 type = SimpleTextDefine.SQL_DROP;
 }
 else {
 throw new SQLException("Invalid SQL statement: " + sql[0]);
 }
 return type;
 }

 // --
 // prepare
 // Prepare the already parsed SQL statement.
 // Returns true if a result set exists.
 // --

 protected boolean prepare(
 boolean prepareOnly)
 throws SQLException
 {
 boolean resultSet = false;

 // Determine the type of statement present

 statementType = getStatementType(parsedSQL);

 // Perform action depending upon the SQL statement type

 switch (statementType) {

 // CREATE statement

 case SimpleTextDefine.SQL_CREATE:

 // If attempting to prepare a DDL (Data Definition Language)
 // statement, raise an exception.
 if (prepareOnly) {
 throw new SQLException("DDL statements cannot be
 prepared");
 }

 // Create the table

 createTable();

 updateCount = 0;
 break;

 // DROP statement

 case SimpleTextDefine.SQL_DROP:

 // If attempting to prepare a DDL (Data Definition Language)
 // statement, raise an exception

 if (prepareOnly) {
 throw new SQLException("DDL statements cannot be
 prepared");
 }

 // Drop the table

 dropTable();

 updateCount = 0;
 break;

 // INSERT statement

 case SimpleTextDefine.SQL_INSERT:

 // Insert data into the table

 insert(prepareOnly);

 updateCount = 1;
 break;

 // SELECT statement

 case SimpleTextDefine.SQL_SELECT:
 // Select data from the table

 select(prepareOnly);

 resultSet = true;
 updateCount = -1;
 break;

 default:
 throw new SQLException("Unknown SQL statement type: " +
 statementType);
 }

 return resultSet;
 }

 // --
 // createTable
 // Attempt to create the table from the parsed SQL statement.
 //
 // Grammar:
 //
 // create-statement ::= CREATE TABLE table-name
 // (column-element [,column-element] ...)
 //
 // column-element ::= column-identifier data-type
 //
 // --

 protected void createTable()
 throws SQLException
 {
 // The minimum SQL statement must have 7 elements:
 //
 // CREATE TABLE foo (COL VARCHAR)

 if (parsedSQL.length < 7) {
 throw new SQLException ("Invalid CREATE statement");
 }

 // The next word must be TABLE; this is the only type of
 // CREATE that the SimpleText driver supports.

 if (!parsedSQL[1].equalsIgnoreCase("TABLE")) {
 throw new SQLException("CREATE must be followed by TABLE");
 }

 // Make sure we are not in read-only mode

 if (ownerConnection.isReadOnly()) {
 throw new SQLException(
 "Unable to CREATE TABLE: connection is read-only");
 }

 // The next word is the table name. Verify that it does not
 // contain any invalid characters.

 validateName(parsedSQL[2], "table");

 // The next word should be an open paren

 if (!parsedSQL[3].equals("(")) {
 throw new SQLException(
 "Invalid CREATE TABLE statement: missing paren '('");
 }

 // Now we can step through the other parameters. The format
 // should be:
 //
 // (column type [, column type] ...)
 //
 // We will build a text line that describes each of the columns.
 // This line will be the first line in our simple text file.
 //
 // Numeric column names start with '#'
 // Binary column names start with '@'
 // All other names are considered to be varchar

 String line = "";
 String columnName;
 String typeName;
 int word = 4;
 boolean gotCloseParen = false;
 int numCols = 0;
 boolean hasBinary = false;

 // Keep a Hashtable of all of the column names so we can check
 // for duplicates.

 Hashtable names = new Hashtable();
 while ((word < parsedSQL.length) &&
 (!gotCloseParen)) {

 // Get the column name to create and validate

 columnName = parsedSQL[word].toUpperCase();
 validateName(columnName, "column");

 if (names.get(columnName) != null) {
 throw new SQLException("Duplicate column name: " +
 columnName);
 }

 names.put(columnName, "");

 word++;

 // The next column should be the type

 if (word == parsedSQL.length) {
 throw new SQLException("Missing column type");
 }

 typeName = parsedSQL[word];

 if (numCols > 0) {
 line += ",";
 }

 numCols++;

 // Validate the type

 if (typeName.equalsIgnoreCase("VARCHAR")) {
 line += columnName;
 }
 else if (typeName.equalsIgnoreCase("NUMBER")) {
 line += SimpleTextDefine.COL_TYPE_NUMBER + columnName;
 }
 else if (typeName.equalsIgnoreCase("BINARY")) {
 line += SimpleTextDefine.COL_TYPE_BINARY + columnName;
 hasBinary = true;
 }
 else {
 throw new SQLException("Invalid column type: " +
 typeName);
 }

 word++;

 if (word == parsedSQL.length) {
 throw new SQLException("Missing close paren");
 }

 // The next word must either be a comma, indicating more
 // columns, or the closing paren.

 if (parsedSQL[word].equals(")")) {
 gotCloseParen = true;
 word++;
 break;
 }
 else if (!parsedSQL[word].equals(",")) {

 throw new SQLException("Invalid character near: " +
 columnName + " " + typeName);
 }
 word++;
 }
 // If we got here and did not find a closing paren, raise an
 // error.

 if (!gotCloseParen) {
 throw new SQLException("Missing close paren");
 }

 // We could check for extra junk at the end of the statement, but
 // we'll just ignore it.

 // Verify that the file does not already exist

 String fileName = parsedSQL[2].toUpperCase();
 String fullFile = fileName + SimpleTextDefine.DATA_FILE_EXT;
 String fullPath = ownerConnection.getCatalog() + "/" + fullFile;

 File f = new File (fullPath);
 if (f.exists()) {
 throw new SQLException("Table already exists: " + fileName);
 }
 // Create the table

 try {
 RandomAccessFile raf = new RandomAccessFile(f, "rw");

 // Brand the file

 raf.writeBytes(SimpleTextDefine.DATA_FILE_EXT);

 // Write the column info

 raf.writeBytes(line);
 raf.writeBytes("\n");
 raf.close();
 }
 catch (IOException ex) {
 throw new SQLException("Error accessing file " + fullPath +
 ": " + ex.getMessage());
 }

 // If a binary data type existed, create the binary data file now

 fullFile = fileName + SimpleTextDefine.BINARY_FILE_EXT;
 fullPath = ownerConnection.getCatalog() + "/" + fullFile;

 f = new File (fullPath);

 // Create the binary table

 try {
 RandomAccessFile raf = new RandomAccessFile(f, "rw");
 raf.close();
 }
 catch (IOException ex) {

 throw new SQLException("Error accessing file " + fullPath +
 ": " + ex.getMessage());
 }
 }

 // --
 // dropTable
 // Attempt to drop a table.
 //
 // Grammar:
 //
 // drop-statement ::= DROP TABLE table-name
 //
 // --

 protected void dropTable()
 throws SQLException
 {
 // The SQL statement must have 3 elements:
 //
 // DROP TABLE table

 if (parsedSQL.length != 3) {
 throw new SQLException ("Invalid DROP statement");
 }

 // The next word must be TABLE; this is the only type of
 // DROP that the SimpleText driver supports.

 if (!parsedSQL[1].equalsIgnoreCase("TABLE")) {
 throw new SQLException("DROP must be followed by TABLE");
 }

 // Make sure we are not in read-only mode

 if (ownerConnection.isReadOnly()) {
 throw new SQLException(
 "Unable to DROP TABLE: connection is read-only");
 }

 // The next word is the table name. Verify that it does not
 // contain any invalid characters.

 validateName(parsedSQL[2], "table");

 // Verify that the file exists

 String fileName = parsedSQL[2].toUpperCase();
 String fullFile = fileName + SimpleTextDefine.DATA_FILE_EXT;
 String fullPath = ownerConnection.getCatalog() + "/" + fullFile;

 File f = new File (fullPath);
 if (!f.exists()) {
 throw new SQLException("Table does not exist: " + fileName);
 }
 // Delete the file

 f.delete();

 // If a binary data file exists, delete it now

 fullFile = fileName + SimpleTextDefine.BINARY_FILE_EXT;
 fullPath = ownerConnection.getCatalog() + "/" + fullFile;

 f = new File (fullPath);

 if (f.exists()) {
 f.delete();
 }
 }

 // --
 // insert
 // Attempt to insert data into a table.
 //
 // Grammar:
 //
 // insert-statement ::= INSERT INTO table-name
 // [(column-identifier [,column-
 // identifier]...)]
 // VALUES (insert-value [,insert-
 // value]...)
 //
 // --

 protected void insert(
 boolean prepareOnly)
 throws SQLException
 {
 // The SQL statement must have at least 7 elements:
 //
 // INSERT INTO table VALUES (value)

 if (parsedSQL.length <= 7) {
 throw new SQLException ("Invalid INSERT statement");
 }

 // The next word must be INTO

 if (!parsedSQL[1].equalsIgnoreCase("INTO")) {
 throw new SQLException("INSERT must be followed by INTO");
 }

 // Make sure we are not in read-only mode

 if (ownerConnection.isReadOnly()) {
 throw new SQLException(
 "Unable to INSERT: connection is read-only");
 }

 // The next word is the table name. Verify that it does not
 // contain any invalid characters.

 String tableName = parsedSQL[2];
 validateName(tableName, "table");

 // Verify that the file exists. If getColumns returns null,

 // the table does not exist.

 Hashtable columnList = ownerConnection.getColumns(
 ownerConnection.getCatalog(), tableName);

 if (columnList == null) {
 throw new SQLException("Table does not exist: " + tableName);
 }

 int pos = 3;
 Hashtable insertList = null;
 Hashtable valueList = null;
 int colNo = 1;
 SimpleTextColumn column;
 SimpleTextColumn column2;
 String name;

 // If the next word is a paren '(', the column names are being
 // specified. Build a list of columns that will have data
 // inserted.

 if (parsedSQL[pos].equals("(")) {
 insertList = new Hashtable();
 pos++;

 if (pos >= parsedSQL.length) {
 throw new SQLException ("Invalid INSERT statement");
 }
 // Build our insert list. Get each comma separated name
 // until we read a close paren.

 pos = buildList(parsedSQL, pos, ")", insertList);

 // Make sure at least one column was given

 if (insertList.size() == 0) {
 throw new SQLException ("No columns given");
 }

 // Now that we have the insert list, verify each name is in
 // our target table and get the type and precision

 for (int i = 1; i <= insertList.size(); i++) {
 column = (SimpleTextColumn) insertList.get(new
 Integer(i));
 column2 = findColumn(columnList, column.name);
 if (column2 == null) {
 throw new SQLException("Column does not exist: " +
 column.name);

 }
 column.type = column2.type;
 column.precision = column2.precision;
 }

 // Position to the next word after the closing paren

 pos++;

 if (pos >= parsedSQL.length) {
 throw new SQLException(
 "Invalid INSERT statement; missing VALUES
 clause");
 }
 }
 // The next word is VALUES; no column list was given, so assume
 // all columns in the table.

 else if (parsedSQL[pos].equalsIgnoreCase("VALUES")) {
 insertList = new Hashtable();

 // Build the insertList with all columns in the table

 for (colNo = 1; colNo <= columnList.size(); colNo++) {
 column2 = (SimpleTextColumn)columnList.get(new
 Integer(colNo));

 if (column2 == null) {
 throw new SQLException("Invalid column number: " +
 colNo);

 }
 column = new SimpleTextColumn(column2.name);
 column.type = column2.type;
 column.precision = column2.precision;
 insertList.put(new Integer(colNo), column);
 }
 }
 else {
 // Invalid SQL statement

 throw new SQLException(
 "Invalid INSERT statement, no VALUES
 clause");

 }

 // The next word must be VALUES. If there was an insert list,
 // we have positioned past it.

 if (!parsedSQL[pos].equalsIgnoreCase("VALUES")) {
 throw new SQLException(
 "Invalid INSERT statement; missing VALUES clause");
 }

 pos++;
 if (pos >= parsedSQL.length) {
 throw new SQLException (
 "Invalid INSERT statement, missing values");
 }

 // The next word must be the open paren that starts the values

 if (!parsedSQL[pos].equals("(")) {
 throw new SQLException (
 "Invalid INSERT statement, missing values");
 }

 pos++;
 if (pos >= parsedSQL.length) {
 throw new SQLException (
 "Invalid INSERT statement, missing values");
 }

 // Build our value list. Get each comma separated value until
 // we read a close paren.

 valueList = new Hashtable();

 pos = buildList(parsedSQL, pos, ")", valueList);

 // We could check for junk after the INSERT statement, but we
 // won't.

 // Verify that the number of insert items matches the number
 // of data items.

 if (insertList.size() != valueList.size()) {
 throw new SQLException("Number of values does not equal the
 number of items in the insert list");
 }

 // Verify the data is correct

 validateData(insertList, valueList, prepareOnly);

 // If we are just preparing the statement, exit now

 if (prepareOnly) {
 return;
 }

 // Now we can build the line that will get written to the
 // simple text file. If there is any binary data, write it first
 // so that we know what the offset will be.

 String sdfPath = ownerConnection.getCatalog() + "/" + tableName +
 SimpleTextDefine.DATA_FILE_EXT;
 String sbfPath = ownerConnection.getCatalog() + "/" + tableName +
 SimpleTextDefine.BINARY_FILE_EXT;
 File sdf = new File(sdfPath);
 File sbf = new File(sbfPath);
 RandomAccessFile rafsdf = null;
 RandomAccessFile rafsbf = null;
 if (!sdf.exists()) {
 throw new SQLException("Text file does not exist: " +
 sdfPath);
 }

 String line = "";
 long binaryPos = 0;

 for (int i = 1; i <= columnList.size(); i++) {
 column2 = (SimpleTextColumn) columnList.get(new Integer(i));

 // Separate the data by a comma

 if (i > 1) {
 line += ",";
 }

 // If there is no data for this column, skip it

 colNo = findColumnNumber(insertList, column2.name);

 if (colNo == 0) {

 // No data, put in defaults

 switch(column2.type) {
 case Types.VARCHAR:
 line += "''";
 break;
 case Types.VARBINARY:
 line += "-1";
 break;
 default:
 line += "0";
 break;
 }
 continue;
 }

 column = (SimpleTextColumn) valueList.get(new
 Integer(colNo));

 if (column2.type == Types.VARBINARY) {
 if (rafsbf == null) {
 if (!sbf.exists()) {
 throw new SQLException("Binary file does not
 exist: " + sbfPath);
 }
 try {
 rafsbf = new RandomAccessFile(sbf, "rw");

 // Position to the end of file

 rafsbf.seek(rafsbf.length());

 }
 catch (Exception ex) {
 throw new SQLException("Unable to access " +
 sbfPath + ": " + ex.getMessage());
 }
 }

 try {

 // Get the current position

 binaryPos = rafsbf.getFilePointer();

 // Create a new CommonValue with the hex digits
 // (remove the quotes).

 CommonValue value = new CommonValue(
 column.name.substring(1, column.name.
 length() - 1));

 // Now let CommonValue convert the hex string into
 // a byte array.

 byte b[] = value.getBytes();

 // Write the length first

 rafsbf.writeInt(b.length);

 // Write the data

 rafsbf.write(b);
 }
 catch (Exception ex) {
 throw new SQLException("Unable to access " +
 sbfPath + ": " + ex.getMessage());
 }

 // Put the offset pointer in the line

 line += binaryPos;
 }

 // Else some kind of text data, put directly in the line

 else {
 line += column.name;
 }
 }

 // If the binary file was opened, close it now

 if (rafsbf != null) {
 try {
 rafsbf.close();
 }
 catch (Exception ex) {
 throw new SQLException("Unable to close " +
 sbfPath + ": " + ex.getMessage());
 }
 }

 // Now that we have the data line, write it out to the text
 // file.

 try {
 rafsdf = new RandomAccessFile(sdf, "rw");

 // Position to the end of file

 rafsdf.seek(rafsdf.length());

 rafsdf.writeBytes(line);
 rafsdf.writeBytes("\n");

 rafsdf.close();
 }
 catch (Exception ex) {
 throw new SQLException("Unable to access " +
 sdfPath + ": " + ex.getMessage());
 }
 }

 // --
 // select
 // Select data from a table.
 //
 // Grammar:
 //
 // select-statement ::= SELECT select-list FROM table-name
 // [WHERE search-condition]
 //
 // select-list ::= * | column-identifier [,column-identifier]...
 // search-condition ::= column-identifier comparison-operator literal
 // comparison-operator ::= < | > | = | <>
 //
 // --

 protected void select(
 boolean prepareOnly)
 throws SQLException
 {

 // Initialize the filter object

 resultSetFilter = null;

 // The SQL statement must have at least 4 elements:
 //
 // SELECT * FROM table

 if (parsedSQL.length < 4) {
 throw new SQLException ("Invalid SELECT statement");
 }

 Hashtable selectList = new Hashtable();
 int pos = 1;

 // Build our select list. Get each comma separated name until
 // we read a 'FROM'.
 pos = buildList(parsedSQL, pos, "FROM", selectList);

 // There must be at least one column

 if (selectList.size() == 0) {
 throw new SQLException("Select list must be specified");
 }

 // Increment past the 'FROM' word. This is the table name

 pos++;

 if (pos >= parsedSQL.length) {
 throw new SQLException("Missing table name");

 }

 // The next word is the table name. Verify that it does not
 // contain any invalid characters.

 String tableName = parsedSQL[pos];
 validateName(tableName, "table");

 // Verify that the file exists. If getColumns returns null,
 // the table does not exist.

 Hashtable columnList = ownerConnection.getColumns(
 ownerConnection.getCatalog(), tableName);

 if (columnList == null) {
 throw new SQLException("Table does not exist: " + tableName);
 }

 // Now go back through the select list and verify that each
 // column specified is contained in the table. Also expand
 // any * to be all columns.

 Hashtable validList = new Hashtable();
 int validCount = 0;
 SimpleTextColumn column;
 SimpleTextColumn column2;

 for (int i = 1; i <= selectList.size(); i++) {
 // Get the next column from the select list

 column = (SimpleTextColumn) selectList.get(new Integer(i));

 // If it's an *, expand it to all columns in the table
 if (column.name.equals("*")) {
 for (int j = 1; j <= columnList.size(); j++) {
 column2 = (SimpleTextColumn)columnList.get(new
 Integer(j));

 validCount++;
 validList.put(new Integer(validCount), column2);
 }
 }
 else {

 // Make sure the column exists in the table

 column2 = findColumn(columnList, column.name);

 if (column2 == null) {
 throw new SQLException("Column not found: " +
 column.name);
 }

 // Put column on our valid list

 validCount++;
 validList.put(new Integer(validCount), column2);
 }

 }

 // Now we know the table exists and have a list of valid columns.
 // Process the WHERE clause if one exists.

 pos++;

 if (pos < parsedSQL.length) {

 // The next word should be WHERE

 if (!parsedSQL[pos].equalsIgnoreCase ("WHERE")) {
 throw new SQLException("WHERE clause expected");
 }
 // Create a filter object

 resultSetFilter = new SimpleTextFilter();

 pos++;

 if (pos >= parsedSQL.length) {
 throw new SQLException(
 "Column name expected after WHERE clause");
 }

 // The next word is a column name. Make sure it exists in
 // the table.

 resultSetFilter.column = findColumn(columnList,
 parsedSQL[pos]);

 if (resultSetFilter.column == null) {
 throw new SQLException("Column not found: " +
 parsedSQL[pos]);

 }

 // Make sure the column is searchable

 if (!resultSetFilter.column.searchable) {
 throw new SQLException(
 "Column is not searchable: " + parsedSQL[pos]);
 }

 pos++;

 // The next word is the operator. Some operators may take
 // 2 words (i.e <>).

 if (pos >= parsedSQL.length) {
 throw new SQLException("Operator expected in WHERE
 clause");
 }

 if (parsedSQL[pos].equals("=")) {
 resultSetFilter.operator = SimpleTextFilter.OP_EQ;
 }
 else if (parsedSQL[pos].equals("<")) {
 resultSetFilter.operator = SimpleTextFilter.OP_LT;

 }
 else if (parsedSQL[pos].equals(">")) {
 resultSetFilter.operator = SimpleTextFilter.OP_GT;
 }
 else {
 throw new SQLException("Invalid operator: " +
 parsedSQL[pos]);
 }

 // The next word may be our value, or it may be the second
 // part of an operator.

 pos++;

 if (pos >= parsedSQL.length) {
 throw new SQLException("Value expected in WHERE clause");
 }

 if ((resultSetFilter.operator == SimpleTextFilter.OP_LT) &&
 (parsedSQL[pos].equals(">"))) {
 resultSetFilter.operator = SimpleTextFilter.OP_NE;
 pos++;
 if (pos >= parsedSQL.length) {
 throw new SQLException("Value expected in WHERE
 clause");
 }
 }

 // Get the data value and validate

 Hashtable whereList = new Hashtable();
 Hashtable dataList = new Hashtable();
 column = new SimpleTextColumn(parsedSQL[pos]);

 whereList.put(new Integer(1), resultSetFilter.column);
 dataList.put(new Integer(1), column);

 validateData(whereList, dataList, prepareOnly);

 String s = parsedSQL[pos];

 // validateData could have massaged the data value (such as
 // in executing a prepared statement with parameters). Get
 // the value back.
 s = ((SimpleTextColumn) dataList.get(new Integer(1))).name;

 // Strip off any quotes

 if (s.startsWith("'") &&
 s.endsWith("'")) {
 s = s.substring(1,s.length() - 1);
 }

 resultSetFilter.value = new CommonValue(s);

 pos++;

 // Check for extra junk at the end of the statement

 if (pos < parsedSQL.length) {
 throw new SQLException(
 "Invalid characters following WHERE clause");
 }
 }

 // Set the catalog name, table name, and column Hashtable for
 // the result set.

 resultSetCatalog = ownerConnection.getCatalog();
 resultSetTable = tableName;
 resultSetColumns = validList;
 }
 // --
 // findColumn
 // Given a SimpleTextColumn Hashtable and a column name, return
 // the SimpleTextColumn that matches. Null if no match. The column
 // numbers are 1-based.
 // --

 protected SimpleTextColumn findColumn(
 Hashtable list,
 String name)
 {
 SimpleTextColumn column;

 for (int i = 1; i <= list.size(); i++) {
 column = (SimpleTextColumn) list.get(new Integer(i));
 if (column != null) {
 if (column.name.equalsIgnoreCase(name)) {
 return column;
 }
 }
 }
 return null;
 }
 // --
 // findColumnNumber
 // Given a SimpleTextColumn Hashtable and a column name, return
 // the column number that matches. 0 if no match. The column
 // numbers are 1-based.
 // --

 protected int findColumnNumber(
 Hashtable list,
 String name)
 {
 SimpleTextColumn column;

 for (int i = 1; i <= list.size(); i++) {
 column = (SimpleTextColumn) list.get(new Integer(i));
 if (column != null) {
 if (column.name.equalsIgnoreCase(name)) {
 return i;
 }
 }
 }
 return 0;

 }

 // --
 // buildList
 // Given a parsed SQL statement, the current position, and the ending
 // word, build a list of the comma separated words from the SQL
 // statement. This is used for the insert column list, insert
 // values, and select list. Returns the new position in the parsed
 // SQL.
 // --

 public int buildList(
 String sql[],
 int pos,
 String endWord,
 Hashtable list)
 throws SQLException
 {
 SimpleTextColumn column;
 boolean done = false;
 String name;
 int colNo = 1;

 // Loop while more data is present

 while (!done) {

 // Get the next column

 name = sql[pos];

 column = new SimpleTextColumn(name);
 list.put(new Integer(colNo), column);
 colNo++;

 pos++;
 if (pos >= sql.length) {
 if (endWord.length() > 0) {
 throw new SQLException (
 "Invalid statement after " + name);
 }
 else {
 done = true;
 break;
 }
 }

 // If the next word is not a comma, it must be our ending
 // word.

 if (!sql[pos].equals(",")) {

 // Found the ending word? exit the loop

 if (sql[pos].equalsIgnoreCase(endWord)) {
 done = true;
 break;
 }

 if (endWord.length() == 0) {
 throw new SQLException("Invalid data format");
 }

 throw new SQLException (
 "Invalid statement after " + name);
 }

 pos++;
 if (pos >= sql.length) {
 if (endWord.length() > 0) {
 throw new SQLException (
 "Invalid statement after " + name);

 }
 else {
 done = true;
 break;
 }
 }
 }
 return pos;
 }

 // --
 // validateData
 // Given an insert list and a data list, verify that each data
 // element is proper for the given type and precision.
 // --

 protected void validateData(
 Hashtable insertList,
 Hashtable dataList,
 boolean prepareOnly)
 throws SQLException
 {
 SimpleTextColumn insert;
 SimpleTextColumn data;
 int precision = 0;
 int paramNum = 0;

 // Init number of parameters if we are preparing

 if (prepareOnly) {
 paramCount = 0;
 }
 for (int i = 1; i <= insertList.size(); i++) {
 insert = (SimpleTextColumn) insertList.get(new Integer(i));
 data = (SimpleTextColumn) dataList.get(new Integer(i));

 // If a parameter marker is found, either continue to the
 // next list item because we are preparing, or replace it
 // with a bound parameter value.

 if (data.name.equals("?")) {

 if (prepareOnly) {

 // Increment number of parameter markers

 paramCount++;
 continue;
 }

 // Increment current parameter number

 paramNum++;

 // Get String value for the bound parameter from the
 // boundParams Hashtable. If it is not found, throw
 // an exception indicating that not all of the parameters
 // have been set.

 if (boundParams != null) {
 String s = (String) boundParams.get(new
 Integer(paramNum));

 if (s == null) {
 throw new SQLException(
 "Not all parameters have been set");
 }

 // Set the value into the SimpleTextColumn entry
 // If the data is a string or binary type, enclose it
 // in quotes.

 switch(insert.type) {
 case Types.VARCHAR:
 case Types.VARBINARY:
 data.name = "'" + s + "'";
 break;
 default:
 data.name = s;
 break;
 }

 }
 }

 switch(insert.type) {
 case Types.VARCHAR:
 if (!data.name.startsWith("'") ||
 (data.name.length() < 2) ||
 !data.name.endsWith("'")) {
 throw new SQLException(
 "String data must be enclosed in single quotes: "
 + data.name);
 }
 precision = data.name.length() - 2;
 break;
 case Types.INTEGER:
 try {
 Integer.valueOf(data.name);
 }
 catch (Exception ex) {
 throw new SQLException("Invalid numeric data: "
 + data.name);

 }
 precision = data.name.length();
 break;
 case Types.BINARY:
 if (!data.name.startsWith("'") ||
 (data.name.length() < 2) ||
 !data.name.endsWith("'")) {
 throw new SQLException(
 "Binary data must be enclosed in single quotes: "
 + data.name);
 }
 if ((data.name.length() % 2) != 0) {
 throw new SQLException(
 "Binary data must have even number of hex
 digits:" + data.name);
 }
 precision = (data.name.length() - 2) / 2;
 break;
 }
 if (precision > insert.precision) {
 throw new SQLException("Invalid data precision for " +
 insert.name);
 }
 }
 }

 // --
 // validateName
 // Verify that the given name does not contain any invalid
 // characters. This will be used for both table names and column
 // names.
 // --

 protected void validateName(
 String name,
 String type)
 throws SQLException
 {
 // Invalid characters other than a-z, 0-9, and A-Z

 String invalid = "@#./\\()";

 char c;
 int j;

 for (int i = 0; i < name.length(); i++) {
 c = name.charAt(i);

 // If it's not an alpha numeric or numeric character,
 // check the list of invalid characters

 if (!((c >= 'a') && (c <= 'z')) &&
 !((c >= '0') && (c <= '9')) &&
 !((c >= 'A') && (c <= 'Z'))) {
 for (j = 0; j < invalid.length(); j++) {
 if (c == invalid.charAt(j)) {
 throw new SQLException("Invalid " + type + "
 name: " + name);
 }

 }
 }
 }

 }
 //---
 // getConnection
 // Returns the owner connection object.
 //---
 public SimpleTextIConnection getConnection()
 {
 return ownerConnection;
 }

 // Owning connection object
 protected SimpleTextIConnection ownerConnection;

 // SQLWarning chain
 protected SQLWarning lastWarning;

 // The current SQL statement
 protected String sqlStatement;

 // The String array of parsed SQL words
 protected String parsedSQL[];

 // The current SQL statement type (i.e. SQL_SELECT, SQL_CREATE, etc.)
 protected int statementType;

 // Update count for the last statement that executed
 protected int updateCount;

 // Attributes used for creating a result set

 String resultSetCatalog;
 String resultSetTable;
 Hashtable resultSetColumns;

 // If a filter exists for a select statement, a SimpleTextFilter
 // object will be created.
 SimpleTextFilter resultSetFilter;

 // Our current result set
 ResultSet currentResultSet;

 // A Hashtable for each bound parameter. Only valid for
 // PreparedStatements.
 Hashtable boundParams;

 // The count of parameter markers. Only valid for PreparedStatements
 int paramCount;
}

Table of Contents

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Table of Contents

APPENDIX C
DB2 JDBC Driver Source Code

As a bonus, a DB2 format JDBC driver is included on the CD-ROM. If you are still unclear about implementation
issues surrounding the writing of JDBC drivers, read on. In this appendix, the full source code for the DB2 driver is
listed. All of the classes for the driver are listed here except for the DB2DatabaseMetaData class, which is on the CD-
ROM and Web site, as well as the source code for the other classes. This JDBC driver uses native methods, and it
provides a valuable example of how you can incorporate existing database library files to quickly make a JDBC driver
via native methods. Heiner Braun is the author of this driver, and while it is still under development, it is fully
functional. He can be reached at braunhr@minnie.informatik.uni-stuttgart.de.

Listing C.1 DB2Driver.java.

/* db2jdbc.sql.DB2Driver
 *
 * Copyright (c) 1996 Heiner Braun
 * Based on mSQL stuff by George Reese
 * (borg&imaginary.com)
 * as well as the JDBC specification v0.70.
 * Left original comments; my comments are marked with
 * _hb_.
 * A JDBC compliant DB2 driver.
 */
package db2jdbc.sql;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.DriverPropertyInfo;
import java.util.Properties;
public class DB2Driver implements java.sql.Driver {
 /**
 * Constructs a new driver and registers it with
 * java.sql.DriverManager.registerDriver() as specified by the JDBC
 * draft protocol.
 */
 public DB2Driver() throws SQLException {
 java.sql.DriverManager.registerDriver(this);
 }

 /**
 * Takes a look at the given URL to see if it is meant for this
 * driver. If not, simply return null. If it is, then go ahead and
 * connect to the database. For the mSQL implementation of JDBC, it
 * looks for URL's in the form of <P>
 * <PRE>
 * _hb_ currently the DB2Driver accepts:

 * _hb_ jdbc:db2local:[db_name]
 * _hb_ later the following should be accepted (see p.18 JDBC spec):
 * _hb_ [db_name] is optional
 * _hb_ jdbc:db2local:[db_name];UID=...;PWD=...
 * jdbc:msql://[host_addr]:[port]/[db_name]
 * </PRE>
 * &see java.sql.Driver#connect
 * ¶m url the URL for the database in question
 * ¶m info the properties object
 * &return null if the URL should be ignored, a new Connection
 * implementation if the URL is a valid mSQL URL
 */
 public Connection connect(String url, Properties info)
 throws SQLException {
 if(! url.substring(5,13).equals("db2local")) return null;
 // _hb_ pass on thrown SQLExceptions...
 return new DB2Connection(info.getProperty("user"),
 info.getProperty("password"),
 url.substring(14));
 }

 /**
 * Returns true if the driver thinks that it can open a connection
 * to the given URL. Typically, drivers will return true if they
 * understand the sun-protocol specified in the URL, and false
 * otherwise.
 *
 * ¶m url the URL of the database
 * &return true if this driver can connect to the given URL
 */
 public boolean acceptsURL(String url) throws SQLException {
 if(! url.substring(5,13).equals("db2local")) return false;
 // _hb_ URLs won't be supported
 return true;
 }

 /**
 * <p>The getPropertyInfo method is intended to allow a generic GUI
 * tool to discover what properties it should prompt a human for in
 * order to get enough information to connect to a database. Note that
 * depending on the values the human has supplied so far, additional
 * values may become necessary, so it may be necessary to iterate
 * though several calls to get PropertyInfo.
 *
 * ¶m url the URL of the database to connect to
 * ¶m info a proposed list of tag/value pairs that will be sent on
 * connect open
 * &return an array of DriverPropertyInfo objects describing possible
 * properties; this array may be an empty array if no
 * properties are required
 */
 public DriverPropertyInfo[] getPropertyInfo(String url,
 java.util.Properties info)
 throws SQLException {

 // _hb_ what does empty array really mean?
 return null;
 }

 /**
 * Gives the major version for this driver as required by the JDBC
 * draft specification.
 * &see java.sql.Driver#getMajorVersion
 * &return the major version
 */
 public int getMajorVersion() {
 return 0;
 }

 /**
 * Gives the minor version for this driver as required by the JDBC
 * draft specification.
 * &see java.sql.Driver#getMinorVersion
 * &return the minor version
 */
 public int getMinorVersion() {
 return 1;
 }

 /**
 * Report whether the Driver is a genuine JDBC COMPLIANT (tm) driver.
 * A driver may only report "true" here if it passes the JDBC
 * compliance tests, otherwise it is required to return false.
 *
 * JDBC compliance requires full support for the JDBC API and full
 * support for SQL-92 Entry Level. It is expected that JDBC compliant
 * drivers will be available for all the major commercial databases.
 *
 * This method is not intended to encourage the development of non-JDBC
 * compliant drivers, but is a recognition of the fact that some
 * vendors are interested in using the JDBC API and framework for
 * lightweight databases that do not support full database
 * functionality, or for special databases, such as document information
 * retrieval, where a SQL implementation may not be feasible.
 */
 public boolean jdbcCompliant() {
 return false;
 }
}

Listing C.2 DB2Connection.java.

/* db2jdbc.sql.DB2Connection
 *
 * Copyright (c) 1996 Heiner Braun
 * Based on mSQL stuff by George Reese (borg&imaginary.com).
 * Left (some) original comments; my comments are marked with _hb_.
 * A DB2 implementation of the JDBC specification Connection interface.
 */
package db2jdbc.sql;
import java.sql.CallableStatement;
import java.sql.DatabaseMetaData;
// _hb_ import java.sql.Driver;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.sql.SQLWarning;
import java.sql.Statement;

import db2jdbc.sql.db2access.DB2CLI;
import db2jdbc.sql.db2access.DB2CLIException;

public class DB2Connection implements java.sql.Connection {
 /**
 * DB2CLI object
 */
 private DB2CLI db2CLI = null;
 /**
 * The JDBC driver for this connection
 */
 // _hb_ private Driver driver;
 /**
 * The URL for this connection
 * _hb_ not needed?
 */
 private String url;
 /**
 * Catalog string that has no meaning to mSQL
 */
 private String catalog;
 /**
 * Transaction isolation level, meaningless to mSQL
 */
 private int isolation;
 /**
 * Constructs a new JDBC draft specification connection object for the
 * mSQL database. Creates an instance of Darryl Collins' mSQL class
 * and uses it to connect to the named database on the named host.
 * &exception SQLException raised in the event of connection failure
 * ¶m host the IP address of the host on which the mSQL server
 * resides
 * ¶m root true if this is a root connection, false if otherwise
 * ¶m database the database to which a connection should
 * be made
 * ¶m u the URL used to connect to this database
 * ¶m d the driver that instantiated this connection
 */
 public DB2Connection(String user, String passwd,
 String database)
 throws SQLException {

 catalog = database;
 db2CLI = new DB2CLI();
 // if(user == null || user == "") user = "nobody";
 try {
 db2CLI.getEnv();
 db2CLI.openConnection(user, passwd, database);
 }
 catch(DB2CLIException e) {
 db2CLI = null;
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * JDBC draft specification method for returning a SQL statement
 * object.

 * &see java.sql.Connection#createStatement
 * &exception SQLException thrown in the event the creation fails
 * &return a new statement object
 */
 public Statement createStatement() throws SQLException {
 return new DB2Statement(this);
 }

 /**
 * JDBC draft specification method for returning an SQL pre-compiled
 * statement. Note that mSQL does not support such things, so this
 * thing just throws an exception.
 * &see java.sql.Connection#prepareStatement
 * &exception SQLException gets thrown any time this is called
 */
 public PreparedStatement prepareStatement(String sql)
 throws SQLException {
 throw new SQLException("Prepared statements are not yet supported.");
 }

 /**
 * JDBC draft specification method for creating a stored procedure
 * call. Note that mSQL does not support stored procedures, so this
 * method throws an exception.
 * &see java.sql.Connection#prepareCall
 * &exception SQLException gets thrown any time this is called
 */
 public CallableStatement prepareCall(String sql)
 throws SQLException {
 throw new SQLException("Stored procedures are not yet supported.");
 }

 /**
 * JDBC draft specification method for converting generic SQL into
 * mSQL specific SQL. Such a task would be mind-boggling, given the
 * fact that mSQL supports such a small subset of ANSI SQL. This
 * method therefore simply returns the original and hopes for the best.
 * &see java.sql.Connection#nativeSQL
 * ¶m sql the query which just gets thrown right back out
 * &return the mSQL SQL string
 */
 public String nativeSQL(String sql) throws SQLException {
 return sql;
 }

 /**
 * JDBC draft specification method for setting auto-commit. Since
 * mSQL has no transaction management, this connection object acts
 * exactly as if auto-commit were set. So this method does nothing.
 * &see java.sql.Connection#setAutoCommit
 * ¶m b this does nothing
 */
 public void setAutoCommit(boolean b) throws SQLException {
 // _hb_ to be done soon
 }

 /**
 * Get the current auto-commit state.
 * &return current state of auto-commit mode

 * &see #setAutoCommit
 */
 public boolean getAutoCommit() throws SQLException {
 // _hb_ to be done soon, default is auto-commit
 return true;
 }

 /**
 * JDBC draft specification method for committing a transaction. Since
 * mSQL has no support for commits or rollbacks, this method does
 * nothing.
 * NOTE: Should I throw an exception here?
 * &see java.sql.Connection#commit
 */
 public void commit() throws SQLException {
 // _hb_ to be done soon
 }

 /**
 * JDBC draft specification method for rolling back a transaction.
 * Since mSQL has no support for rollbacks, this method throws an
 * exception.
 * &see java.sql.Connection#rollback
 * &exception SQLException gets thrown if this ever gets called
 */
 public void rollback() throws SQLException {
 // _hb_ to be done soon
 throw new SQLException("Exception: Rollbacks are not yet
 supported.");
 }

 /**
 * JDBC draft specification method for closing the database connection.
 * &see java.sql.Connection#close
 * &exception SQLException thrown in the event of an MsqlException
 */
 public void close() throws SQLException {
 db2CLI.closeConnection();
 db2CLI.freeEnv();
 db2CLI = null;
 }

 /**
 * JDBC draft specification method for letting others know the
 * connection status.
 * &see java.sql.Connection#isClosed
 * &exception SQLException who knows why Sun thought this needed an
 * exception
 * &return true if the connection is closed, false otherwise
 */
 public boolean isClosed() throws SQLException {
 return (db2CLI == null);
 }

 /**
 * JDBC draft specification method to return information about
 * the database.
 * &see java.sql.Connection#getMetData

 * &exception SQLException thrown if an error occurs reading meta-data
 * &return a DatabaseMetaData object with database info
 */
 public DatabaseMetaData getMetaData()
 throws SQLException {
 return new DB2DatabaseMetaData(db2CLI);
 }

 /**
 * JDBC draft specification method to put the connection in read-only
 * mode. mSQL does not support read-only mode, so this method does
 * nothing.
 * NOTE: Should an exceptionbe thrown here?
 * &see java.sql.Connection#setReadOnly
 * ¶m b dummy parameter than has no meaning to mSQL
 */
 public void setReadOnly(boolean b) throws SQLException {
 }

 /**
 * JDBC draft specification method to return the read-only status of
 * the connection. Since mSQL has no such status, this always returns
 * false.
 * &see java.sql.Connection#isReadOnly
 * &return always false
 */
 public boolean isReadOnly() throws SQLException {
 return false;
 }

 /**
 * JDBC draft specification method to select a sub-space of the target
 * database. It basically has no meaning to mSQL.
 * &see java.sql.Connection#setCatalog
 * ¶m str the catalog
 */
 public void setCatalog(String str) throws SQLException {
 throw new SQLException("DB2Connection.setCatalog() cannot be used.");
 }

 /**
 * JDBC draft specification method to return the catalog. This has no
 * meaning to mSQL.
 * &see java.sql.Connection#getCatalog
 * &return the catalog name
 */
 public String getCatalog() throws SQLException {
 return catalog;
 }

 /**
 * JDBC draft specification method for setting the transaction
 * isolation level for the connection. This has no meaning to mSQL.
 * &see java.sql.Connection#setTransactionIsolation
 * ¶m x the isolation level
 */
 public void setTransactionIsolation(int x)
 throws SQLException {
 isolation = x;

 }

 /**
 * JDBC draft specification method for retrieving the transaction
 * isolation level for the connection. This information has no meaning
 * to mSQL.
 * &see java.sql.Connection#getTransactionIsolation
 * &return the transaction isolation level
 */
 public int getTransactionIsolation() throws SQLException {
 return isolation;
 }

 /**
 * When a Connection is in auto-close mode, all its
 * PreparedStatements, CallableStatements, and ResultSets will be
 * closed when a transaction is committed or rolled back. By
 * default, a new Connection is in auto-close mode.
 *
 * <P> When auto-close is disabled, JDBC attempts to keep
 * all statements and ResultSets open across commits and
 * rollbacks. However, the actual behaviour will vary depending
 * on what the underlying database supports. Some databases
 * allow these objects to remain open across commits, whereas
 * other databases insist on closing them.
 *
 * ¶m autoClose true enables auto-close, false disables
 * auto-close
 *
 * &see DatabaseMetaData#supportsOpenCursorsAcrossCommit
 * &see DatabaseMetaData#supportsOpenCursorsAcrossRollback
 * &see DatabaseMetaData#supportsOpenStatementsAcrossCommit
 * &see DatabaseMetaData#supportsOpenStatementsAcrossRollback
 */
 public void setAutoClose(boolean autoClose) throws SQLException {
 throw new SQLException("DB2Connection.setAutoClose is not yet
 supported.");
 }

 /**
 * Get the current auto-close state.
 * &return current state of auto-close mode
 * &see #setAutoClose
 */
 public boolean getAutoClose() throws SQLException {
 throw new SQLException("DB2Connection.getAutoClose is not yet
 supported.");
 }

 /**
 * JDBC draft specification method for retrieving a chain of warnings
 * related to the connection.
 * &see java.sql.Connection#getWarnings
 * &return the chain of warnings for this connection
 */
 public SQLWarning getWarnings() throws SQLException {
 return null;
 }

 /**
 * JDBC draft specification method for clearing the warning chain.
 * &see java.sql.Connection#clearWarnings
 */
 public void clearWarnings() throws SQLException {
 }

 /**
 * Executes an SQL statement.
 * ¶m sql the statement to be executed
 * &return nr of rows
 */
 public DB2CLI db2ExecSQL(String sql) throws SQLException {
 try {
 db2CLI.SQLExecQuery(sql);
 return db2CLI;
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * Executes an mSQL statement.
 * ¶m sql the statement to be executed
 * &return MsqlResult with the results of the statement
 */

 /* _hb_
 public MsqlResult executeMsql(String sql)
 throws SQLException {
 MsqlResult result;

 try {
 result = iMsql.Query(sql);
 }
 catch(DB2CLIException e) {
 throw new SQLException("mSQL exception: " + e.getMessage());
 }
 return result;
}
*/

 /**
 * Gives the URL used to connect to the database.
 * &return the URL
 */
 // _hb_ public final String getURL() {
 // _hb_ return url;
 // _hb_ }
}

Listing C.3 DB2ResultSet.java.

/* db2jdbc.sql.DB2ResultSet
 *
 * Copyright (c) 1996 Heiner Braun

 * Based on mSQL stuff by George Reese (borg&imaginary.com).
 * Left original comments; my comments are marked with _hb_.
 * DB2 implementation of the JDBC draft protocol ResultSet interface.
 */

package db2jdbc.sql;

import java.sql.Date;
import java.sql.Numeric;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.SQLWarning;
import java.sql.Time;
import java.sql.Timestamp;
import java.sql.Types;
import java.util.Hashtable;
import db2jdbc.sql.DB2ResultSetMetaData;
import db2jdbc.sql.db2access.DB2CLI;
import db2jdbc.sql.db2access.DB2CLIException;

public class DB2ResultSet implements java.sql.ResultSet {
 /**
 * Previous get returned null?
 */
 private boolean wasNull = true;
 /**
 * DB2CLI object
 */
 private DB2CLI db2CLI;
 /**
 * Darryl Collins' MsqlResult object for this query
 */
 //private MsqlResult result;
 /**
 * The current row data
 */
 //private String current_row[];
 /**
 * Field information for the current row
 */
 //MsqlFieldDesc current_fields[];
 /* Row number tracking removed in Imaginary 0.92 */
 /**
 * The meta data for this result set
 */
 private DB2ResultSetMetaData meta;
 /**
 * A Hashtable that maps column names to columns
 */
 private Hashtable column_map = null;
 /**
 * Constructs a new result set object given the MsqlResult specified.
 * ¶m res the MsqlResult returned from a previously executed query
 */
 public DB2ResultSet(DB2CLI newDB2CLI) {
 db2CLI = newDB2CLI;
 }

 /**
 * JDBC draft specification method for moving the current row to the
 * next row, returning true if there is another row for processing.
 * &see java.sql.ResultSet#next
 * &exception SQLException thrown if an error occurs during processing
 * &return true if there are more rows to process, otherwise false
 */
 public boolean next() throws SQLException {

 // close open input streams from previous fetch

 try {
 return db2CLI.SQLFetch();
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * JDBC draft specification method for closing a result set.
 * This has no meaning to mSQL.
 * &see java.sql.ResultSet#close
 */
 public void close() throws SQLException {
 }

 /**
 * JDBC specification method to determine if a column is null.
 * &see java.sql.ResultSet#wasNull
 * &exception SQLException in the event of an MsqlException
 * &return true if the column is null, false otherwise
 */
 public boolean wasNull() throws SQLException {
 return wasNull;
 }

 /**
 * JDBC draft specification method for getting a char value from
 * the named column. Note that the JDBC draft provides that this
 * method gets the value as a char, so you can retrieve int values
 * into String objects.
 * &see java.sql.ResultSet#getChar
 * &exception SQLException thrown for invalid columns or bad rows
 * ¶m column the column being retrieved
 * &return the column as a String
 */
 public String getString(int column) throws SQLException {
 String ret = null;

 try {
 ret = db2CLI.getString(column);
 wasNull = (ret == null);
 return ret;
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }

 }

 /**
 * JDBC specification method for retrieving a column as a boolean
 * value. Interprets "", null, and "0" as false, others as true.
 * &see java.sql.ResultSet#getBoolean
 * &exception SQLException a sure sign of the apocolypse
 * ¶m column the column for which the value is being retrieved
 * &return false for "", null, or "0"; true otherwise
 */
 public boolean getBoolean(int column) throws SQLException {
 String bool;
 try {
 bool = db2CLI.getString(column);
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 if (bool.equals("") || bool == null || bool.equals("0"))
 return false;
 else
 return true;
 }

 /**
 * JDBC draft specification method to retrieve a byte value from
 * the database.
 * &see java.sql.ResultSet#getByte
 * &exception SQLException things did not go so hot
 * ¶m column the column being retrieved
 * &return the named column as a byte
 */
 public byte getByte(int column) throws SQLException {
 String str;

 if((str = getString(column)) == null || str.length() == 0) return
 (byte)0;
 else if(str.length() != 1) {
 throw new SQLException("Data format error: cannot convert string to
 byte.");
 }
 else return (byte)str.charAt(0);

 }

 /**
 * JDBC draft specification method to retrieve a byte value from
 * the database.
 * &see java.sql.ResultSet#getTinyInt
 * &exception SQLException things did not go so hot
 * ¶m column the column being retrieved
 * &return the named column as a byte
 */
 public short getShort(int column) throws SQLException {
 try {
 return (short)Integer.parseInt(db2CLI.getString(column));
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());

 }
 }

 /**
 * JDBC draft specification method to retrieve a short value from
 * the database.
 * &see java.sql.ResultSet#getSmallInt
 * &exception SQLException things did not go so hot
 * ¶m column the column being retrieved
 * &return the named column as a short
 */
 public int getInt(int column) throws SQLException {
 try {
 return Integer.parseInt(db2CLI.getString(column));
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * JDBC draft specification method to retrieve an integer value from
 * the database.
 * &see java.sql.ResultSet#getInteger
 * &exception SQLException things did not go so hot
 * ¶m column the column being retrieved
 * &return the named column as an integer
 */
 public long getLong(int column) throws SQLException {
 try {
 return Long.parseLong(db2CLI.getString(column));
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * JDBC draft specification method to retrieve a float value from
 * the database.
 * &see java.sql.ResultSet#getFloat
 * &exception SQLException things did not go so hot
 * ¶m column the column being retrieved
 * &return the named column as a float
 */
 public float getFloat(int column) throws SQLException {
 Float ret;
 try {
 ret = new Float(db2CLI.getString(column));
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }

 return ret.floatValue();
 }

 /**

 * JDBC draft specification method to retrieve a double value from
 * the database.
 * &see java.sql.ResultSet#getDouble
 * &exception SQLException things did not go so hot
 * ¶m column the column being retrieved
 * &return the named column as a double
 */
 public double getDouble(int column) throws SQLException {
 Double ret;

 try {
 ret = new Double(db2CLI.getString(column));
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }

 return ret.doubleValue();
 }

 /**
 * JDBC draft specification method to retrieve a Numeric object from
 * the database.
 * &see java.sql.ResultSet#getNumeric
 * &exception SQLException things did not go so hot
 * ¶m column the column being retrieved
 * ¶m scale how many decimal digits after the floating point to
 * maintain
 * &return the named column as a Numeric
 */
 public Numeric getNumeric(int column, int scale)
 throws SQLException {
 try {
 return new Numeric(db2CLI.getString(column));
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * JDBC draft specification method to return a byte array.
 * &see java.sql.ResultSet#getBinary
 * &exception SQLException thrown if something goes wrong
 * ¶m column the column being retrieved
 * &return a byte array that is the value of the column
 */
 public byte[] getBytes(int column) throws SQLException {
 String str;
 byte b[];

 str = getString(column);
 if(str == null) return null;
 b = new byte[str.length() + 10];
 str.getBytes(0, str.length(), b, 0);
 return b;
 }

 /**

 * JDBC draft specification for retrieving a date column.
 * Can you say namespace pollution? I knew you could.
 * &see java.sqlResultSet#getDate
 * @exception SQLException thrown in the event of problems
 * ¶m column the column being retrieved
 * &return the date value for the column
 */
 public Date getDate(int column)
 throws SQLException {
 try {
 return Date.valueOf(db2CLI.getString(column));
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * JDBC draft specification method for retrieving a time from the
 * database.
 * &see java.sql.ResultSet#getTime
 * &exception SQLException thrown in the event of troubles
 * ¶m column the column being retrieved
 * &return the column as a java.sql.Time object
 */
 public Time getTime(int column)
 throws SQLException {
 try {
 return Time.valueOf(db2CLI.getString(column));
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * JDBC draft specification method for retrieving a timestamp from
 * the database.
 * &see java.sql.ResultSet#getTimestamp
 * &exception SQLException thrown in the event of troubles
 * ¶m column the column being retrieved
 * &return the column as a java.sql.Timestamp object
 */
 public Timestamp getTimestamp(int column)
 throws SQLException {
 try {
 return Timestamp.valueOf(db2CLI.getString(column));
 }
 catch(DB2CLIException e) {
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * This is not currently supported.
 * _hb_ necessary for retrieving (HTML-)files?
 */
 public java.io.InputStream getAsciiStream(int column) {

 return null;
 }

 /**
 * This is not currently supported
 */
 public java.io.InputStream getUnicodeStream(int column)
 throws SQLException {
 return null;
 }

 /**
 * This is not currently supported
 */
 public java.io.InputStream getBinaryStream(int column)
 throws SQLException {
 return null;
 }

 //===
 // Methods for accessing results by column name
 //===

 /**
 * Get the value of a column in the current row as a Java String.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is
 * null
 */
 public String getString(String columnName) throws SQLException {
 return getString(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a Java boolean.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is
 * false
 */
 public boolean getBoolean(String columnName) throws SQLException{
 return getBoolean(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a Java byte.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is 0
 */
 public byte getByte(String columnName) throws SQLException{
 return getByte(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a Java short.
 *
 * ¶m columnName is the SQL name of the column

 * &return the column value; if the value is SQL NULL the result is 0
 */
 public short getShort(String columnName) throws SQLException{
 return getShort(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a Java int.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is 0
 */
 public int getInt(String columnName) throws SQLException{
 return getInt(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a Java long.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is 0
 */
 public long getLong(String columnName) throws SQLException{
 return getLong(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a Java float.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is 0
 */
 public float getFloat(String columnName) throws SQLException{
 return getFloat(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a Java double.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is 0
 */
 public double getDouble(String columnName) throws SQLException{
 return getDouble(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a java.sql.Numeric
 * object.
 *
 * ¶m columnName is the SQL name of the column
 * ¶m scale the number of digits to the right of the decimal
 * &return the column value; if the value is SQL NULL the result is
 * null
 */
 public Numeric getNumeric(String columnName, int scale) throws
 SQLException{
 return getNumeric(findColumn(columnName), scale);

 }

 /**
 * Get the value of a column in the current row as a Java byte array.
 * The bytes represent the raw values returned by the driver.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is
 * null
 */
 public byte[] getBytes(String columnName) throws SQLException{
 return getBytes(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a java.sql.Date
 * object.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is
 * null
 */
 public java.sql.Date getDate(String columnName) throws SQLException{
 return getDate(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a java.sql.Time
 * object.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is
 * null
 */
 public java.sql.Time getTime(String columnName) throws SQLException{
 return getTime(findColumn(columnName));
 }

 /**
 * Get the value of a column in the current row as a java.sql.Timestamp
 * object.
 *
 * ¶m columnName is the SQL name of the column
 * &return the column value; if the value is SQL NULL the result is
 * null
 */
 public java.sql.Timestamp getTimestamp(String columnName) throws
 SQLException {
 return getTimestamp(findColumn(columnName));
 }

 /**
 * A column value can be retrieved as a stream of ASCII characters
 * and then read in chunks from the stream. This method is
 * particularly suitable for retrieving large LONGVARCHAR values. The
 * JDBC driver will do any necessary conversion from the database
 * format into ASCII.
 *
 * <P>Note: All the data in the returned stream must

 * be read prior to getting the value of any other column. The
 * next call to a get method implicitly closes the stream.
 *
 * ¶m columnName is the SQL name of the column
 * &return a Java input stream that delivers the database column value
 * as a stream of one byte ASCII characters; if the value is SQL NULL
 * then the result is null
 */
 public java.io.InputStream getAsciiStream(String columnName) throws
 SQLException {
 return getAsciiStream(findColumn(columnName));
 }

 /**
 * A column value can be retrieved as a stream of Unicode characters
 * and then read in chunks from the stream. This method is
 * particularly suitable for retrieving large LONGVARCHAR values. The
 * JDBC driver will do any necessary conversion from the database
 * format into Unicode.
 *
 * <P>Note: All the data in the returned stream must
 * be read prior to getting the value of any other column. The
 * next call to a get method implicitly closes the stream.
 *
 * ¶m columnName is the SQL name of the column
 * &return a Java input stream that delivers the database column value
 * as a stream of two byte Unicode characters; if the value is SQL
 * NULL then the result is null
 */
 public java.io.InputStream getUnicodeStream(String columnName) throws
 SQLException {
 return getUnicodeStream(findColumn(columnName));
 }

 /**
 * A column value can be retrieved as a stream of uninterpreted bytes
 * and then read in chunks from the stream. This method is
 * particularly suitable for retrieving large LONGVARBINARY values.
 *
 * <P>Note: All the data in the returned stream must
 * be read prior to getting the value of any other column. The
 * next call to a get method implicitly closes the stream.
 *
 * ¶m columnName is the SQL name of the column
 * &return a Java input stream that delivers the database column value
 * as a stream of uninterpreted bytes; if the value is SQL NULL
 * then the result is null
 */
 public java.io.InputStream getBinaryStream(String columnName)
 throws SQLException{
 return getBinaryStream(findColumn(columnName));
 }

 //===
 // Advanced features
 //===

 /**

 * JDBC draft specification for getting the chain of warnings for this
 * statement.
 * &see java.sql.Statement#getWarnings
 * &return the chain of warnings
 */
 public SQLWarning getWarnings() throws SQLException {
 return null;
 }

 /**
 * JDBC draft specification for clearing the warning chain.
 * &see java.sql.Statement#clearWarnings
 */
 public void clearWarnings() throws SQLException {
 }

 /**
 * JDBC draft specification method for returning a cursor name.
 * mSQL does not support this feature.
 * &see java.sql.ResultSet#getCursorName
 * &return ""
 */
 public String getCursorName() throws SQLException {
 throw new SQLException("Cursors are not yet supported.");
 }

 /**
 * JDBC draft specification method for returning meta-deta on a result
 * set.
 * &see java.sql.ResultSet#getMetaData
 * &exception SQLException thrown on error getting meta-data
 * &return ResultSetMetaData object containing result set info
 */
 public ResultSetMetaData getMetaData()
 throws SQLException {
 if(meta == null) {
 meta = new DB2ResultSetMetaData(db2CLI);
 }
 return meta;
 }

 /**
 * <p>Get the value of a column as a Java object.
 *
 * <p>This method will convert the result column to the specified SQL
 * type and then return a Java object corresponding to the specified
 * SQL type.
 *
 * <p>Note that this method may be used to read datatabase specific
 * abstract data types by specifying a targetSqlType of
 * java.sql.types.OTHER, which allows the driver to return a database
 * specific Java type.
 *
 * ¶m columnIndex the first column is 1, the second is 2, ...
 * ¶m targetSqlType this should specify the desired type for the
 * result as a java.sql.Type; the scale argument may further
 * qualify this type
 * ¶m scale for java.sql.Types.DECIMAL or java.sql.Types.NUMERIC
 * types; this is the number of digits after the decimal; for

 * all other types, this value will be ignored
 * &return a java.lang.Object holding the column value
 * &see Types
 */
 public Object getObject(int column, int type, int scale)
 throws SQLException {
 switch(type) {
 case Types.BIT:
 return new Boolean(getBoolean(column));

 case Types.TINYINT:
 return new Character((char)getByte(column));

 case Types.SMALLINT:
 return new Integer(getInt(column));

 case Types.INTEGER:
 return new Integer(getInt(column));

 case Types.BIGINT:
 return new Long(getLong(column));

 case Types.FLOAT:
 return new Float(getFloat(column));

 case Types.REAL:
 return new Float(getFloat(column));

 case Types.DOUBLE:
 return new Double(getDouble(column));

 case Types.NUMERIC:
 return getNumeric(column, scale);

 case Types.DECIMAL:
 return getNumeric(column, scale);

 case Types.CHAR:
 return getString(column);

 case Types.VARCHAR:
 return getString(column);

 case Types.LONGVARCHAR:
 return getString(column);

 case Types.DATE:
 return getDate(column);

 case Types.TIME:
 return getTime(column);

 case Types.TIMESTAMP:
 return getTimestamp(column);

 case Types.BINARY:
 // _hb_ is this an object?
 // _hb_ maybe use a Vector of Character? fill

 return getBytes(column);

 case Types.VARBINARY:
 return getBytes(column);

 case Types.LONGVARBINARY:
 return getBytes(column);

 default:
 return null;
 }
 }

 /**
 * This method is like getObject above but assumes scale of zero.
 */
 public Object getObject(int columnIndex, int targetSqlType) throws
 SQLException{
 return getObject(columnIndex, targetSqlType, 0);
 }

 /**
 * <p>Get the value of a column as a Java object.
 *
 * <p>This method will return the value of the given column as a Java
 * object. The type of the Java object will be default Java Object
 * type corresponding to the column's SQL type, following the mapping
 * specified in the JDBC spec.
 *
 * <p>This method may also be used to read datatabase specific abstract
 * data types.
 *
 * ¶m columnIndex the first column is 1, the second is 2, ...
 * &return a java.lang.Object holding the column value
 */
 public Object getObject(int columnIndex) throws SQLException {
 return getObject(columnIndex, getMetaData().
 getColumnType(columnIndex));
 }
 //===
 // Now three similar getObject methods using column names
 //===

 public Object getObject(String columnName, int targetSqlType, int
 scale) throws SQLException{
 return getObject(findColumn(columnName), targetSqlType, scale);
 }

 public Object getObject(String columnName, int targetSqlType) throws
 SQLException{
 return getObject(findColumn(columnName), targetSqlType, 0);
 }

 public Object getObject(String columnName) throws SQLException{
 return getObject(findColumn(columnName));
 }

 /**
 * Given a column name, this method returns the column number for that

 * name. Column name to number mappings are kept inside a Hashtable.
 * Applications that do not need the overhead of this calculation are
 * not penalized since the mapping only occurs on the first attempt to
 * access a column number by name.
 * &exception java.sql.SQLException thrown if a bad name is passed
 * ¶m name the name of the column desired
 * &return the column number, 1 being the first column
 */
 public int findColumn(String name) throws SQLException {
 Integer num;

 if(column_map == null) {
 ResultSetMetaData m;
 int i, maxi;

 m = getMetaData();
 column_map = new Hashtable(maxi = m.getColumnCount());
 for(i=0; i<maxi; i++) {
 // for testing:
 // System.out.println("Column " + (i + 1) + " : <" +
 // m.getColumnName(i + 1) + ">");

 column_map.put(m.getColumnName(i + 1), new Integer(i+1));
 }
 }
 // _hb_ column names are case insensitive --> considered?
 num = (Integer)column_map.get(name);
 if(num == null) {
 throw new SQLException("Invalid column name: " + name);
 }
 return num.intValue();
 }
}

Listing C.4 DB2ResultSetMetaData.java.

/* db2jdbc.sql.DB2DatabaseMetaData
 *
 * Copyright (c) 1996 Heiner Braun
 * Based on DatabaseMetaData interface code from Sun.
 * Left original comments, except for some very long elaborations...
 * DB2 implementation of the JDBC DatabaseMetaData interface.
 * This provides just a frame to start. Nearly nothing is done.
 */
// This class provides information about the database as a whole.
//
// Many of the methods here return lists of information in ResultSets.
// You can use the normal ResultSet methods such as getString and getInt
// to retrieve the data from these ResultSets. If a given form of
// metadata is not available, these methods show throw a SQLException.
//
// Some of these methods take arguments that are String patterns. These
// methods all have names such as fooPattern. Within a pattern String
// "%" means match any substring of 0 or more characters and "_" means
// match any one character.
//

package db2jdbc.sql;

import java.sql.*;
import db2jdbc.sql.db2access.DB2CLI;

public class DB2DatabaseMetaData implements java.sql.DatabaseMetaData {

 /**
 * DB2CLI object
 */
 private DB2CLI db2CLI = null;

 /**
 * Constructs a new JDBC specification DatabaseMetaData object for the
 * local DB2 database.
 */
 public DB2DatabaseMetaData(DB2CLI newdb2CLI) throws SQLException {
 db2CLI = newdb2CLI;
 }

//---
 // First, a variety of minor information about the target database.

 /**
 * Can all the procedures returned by getProcedures be called by the
 * current user?
 *
 * &return true if so
 */
 public boolean allProceduresAreCallable() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData. allProcedures
 AreCallable() " + "is not yet implemented.");
 }

 /**
 * Can all the tables returned by getTable be SELECTed by the
 * current user?
 *
 * &return true if so
 */
 public boolean allTablesAreSelectable() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.allTablesAreSelectable()
 " + "is not yet implemented.");
 }

 /**
 * What's the url for this database?
 *
 * &return the url or null if it can't be generated
 */
 public String getURL() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.getURL() " +
 " is not yet implemented.");
 }

 /**
 * What's our user name as known to the database?
 *
 * &return our database user name

 */
 public String getUserName() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.getUserName() " +
 "is not yet implemented.");
 }

 /**
 * Is the database in read-only mode?
 *
 * &return true if so
 */
 public boolean isReadOnly() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.isReadOnly() " +
 "is not yet implemented.");
 }

 /**
 * Are NULL values sorted high?
 *
 * &return true if so
 */
 public boolean nullsAreSortedHigh() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.nullsAreSortedHigh() " +
 "is not yet implemented.");
 }

 /**
 * Are NULL values sorted low?
 *
 * &return true if so
 */
 public boolean nullsAreSortedLow() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.nullsAreSortedLow() " +
 "is not yet implemented.");
 }

 /**
 * Are NULL values sorted at the start regardless of sort order?
 *
 * &return true if so
 */
 public boolean nullsAreSortedAtStart() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.nullsAreSortedAtStart() "
 + "is not yet implemented.");
 }

 /**
 * Are NULL values sorted at the end regardless of sort order?
 *
 * &return true if so
 */
 public boolean nullsAreSortedAtEnd() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.nullsAreSortedAtEnd() " +
 "is not yet implemented.");
 }

 /**
 * What's the name of this database product?
 *

 * &return database product name
 */
 public String getDatabaseProductName() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.getDatabaseProductName()
 " + "is not yet implemented.");
 }

 /**
 * What's the version of this database product?
 *
 * &return database version
 */
 public String getDatabaseProductVersion() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData. getDatabase
 ProductVersion() " + "is not yet implemented.");
 }

 /**
 * What's the name of this JDBC driver?
 *
 * &return JDBC driver name
 */
 public String getDriverName() throws SQLException {
 return "Local DB2 JDBC prototype driver";
 }

 /**
 * What's the version of this JDBC driver?
 *
 * &return JDBC driver version
 */
 public String getDriverVersion() throws SQLException {
 return "0.1 alpha";
 }

 /**
 * What's this JDBC driver's major version number?
 *
 * &return JDBC driver major version
 */
 public int getDriverMajorVersion() {
 return 0;
 }

 /**
 * What's this JDBC driver's minor version number?
 *
 * &return JDBC driver minor version number
 */
 public int getDriverMinorVersion(){
 return 1;
 }

 /**
 * Does the database store tables in a local file?
 *
 * &return true if so
 */

 public boolean usesLocalFiles() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.usesLocalFiles() " +
 "is not yet implemented.");
 }

 /**
 * Does the database use a file for each table?
 *
 * &return true if the database uses a local file for each table
 */
 public boolean usesLocalFilePerTable() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.usesLocalFilePerTable() "
 + "is not yet implemented.");
 }

 /**
 * Does the database support mixed case unquoted SQL identifiers?
 *
 * &return true if so
 */
 public boolean supportsMixedCaseIdentifiers() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.
 supportsMixedCaseIdentifiers() " + "is not yet implemented.");
 }

 /**
 * Does the database store mixed case unquoted SQL identifiers in
 * upper case?
 *
 * &return true if so
 */
 public boolean storesUpperCaseIdentifiers() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData. storesUpperCase
 Identifiers() " + "is not yet implemented.");
 }

 /**
 * Does the database store mixed case unquoted SQL identifiers in
 * lower case?
 *
 * &return true if so
 */
 public boolean storesLowerCaseIdentifiers() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData. storesLowerCase
 Identifiers() " + "is not yet implemented.");
 }

 /**
 * Does the database store mixed case unquoted SQL identifiers in
 * mixed case?
 *
 * &return true if so
 */
 public boolean storesMixedCaseIdentifiers() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData. storesMixedCase
 Identifiers() " + "is not yet implemented.");
 }

 /**

 * Does the database support mixed case quoted SQL identifiers?
 *
 * A JDBC compliant driver will always return true.
 *
 * &return true if so
 */
 public boolean supportsMixedCaseQuotedIdentifiers() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData.
 supportsMixedCaseQuotedIdentifiers() " + "is not yet implemented.");
 }

 /**
 * Does the database store mixed case quoted SQL identifiers in
 * upper case?
 *
 * A JDBC compliant driver will always return true.
 *
 * &return true if so
 */
 public boolean storesUpperCaseQuotedIdentifiers() throws SQLException {
 throw new SQLException("DB2DatabaseMetaData. storesUpperCase
 QuotedIdentifiers() " + "is not yet implemented.");
 }

 /**
 * Does the database store mixed case quoted SQL identifiers in
 * lower case?
 *
 * A JDBC compliant driver will always return false.
 *
 * &return true if so
 */
 public boolean storesLowerCaseQuotedIdentifiers() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Does the database store mixed case quoted SQL identifiers in
 * mixed case?
 *
 * A JDBC compliant driver will always return false.
 *
 * &return true if so
 */
 public boolean storesMixedCaseQuotedIdentifiers() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the string used to quote SQL identifiers?
 * This returns a space " " if identifier quoting isn't supported.
 *
 * A JDBC compliant driver always uses a double quote character.
 *
 * &return the quoting string
 */

 public String getIdentifierQuoteString() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a comma separated list of all a database's SQL keywords
 * that are NOT also SQL-92 keywords.
 *
 * &return the list
 */
 public String getSQLKeywords() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a comma separated list of math functions.
 *
 * &return the list
 */
 public String getNumericFunctions() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a comma separated list of string functions.
 *
 * &return the list
 */
 public String getStringFunctions() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a comma separated list of system functions.
 *
 * &return the list
 */
 public String getSystemFunctions() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a comma separated list of time and date functions.
 *
 * &return the list
 */
 public String getTimeDateFunctions() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * This is the string that can be used to escape '_' or '%' in
 * the string pattern style catalog search parameters.

 *
 * <P>The '_' character represents any single character.
 * <P>The '%' character represents any sequence of zero or
 * more characters.
 *
 * &return the string used to escape wildcard characters
 */
 public String getSearchStringEscape() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get all the "extra" characters that can be used in unquoted
 * identifier names (those beyond a-z, 0-9 and _).
 *
 * &return the string containing the extra characters
 */
 public String getExtraNameCharacters() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

//---
 // Functions describing which features are supported.

 /**
 * Is "ALTER TABLE" with add column supported?
 *
 * &return true if so
 */
 public boolean supportsAlterTableWithAddColumn() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is "ALTER TABLE" with drop column supported?
 *
 * &return true if so
 */
 public boolean supportsAlterTableWithDropColumn() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is column aliasing supported?
 *
 * <P>If so, the SQL AS clause can be used to provide names for
 * computed columns or to provide alias names for columns as
 * required.
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsColumnAliasing() throws SQLException {

 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are concatenations between NULL and non-NULL values NULL?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean nullPlusNonNullIsNull() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is the CONVERT function between SQL types supported?
 *
 * &return true if so
 */
 public boolean supportsConvert() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is CONVERT between the given SQL types supported?
 *
 * ¶m fromType the type to convert from
 * ¶m toType the type to convert to
 * &return true if so
 * &see Types
 */
 public boolean supportsConvert(int fromType, int toType) throws
 SQLException { throw new SQLException("Many methods from
 DB2DatabaseMetaData " + "are not yet implemented.");
 }

 /**
 * Are table correlation names supported?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsTableCorrelationNames() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * If table correlation names are supported, are they restricted
 * to be different from the names of the tables?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */

 public boolean supportsDifferentTableCorrelationNames() throws
 SQLException { throw new SQLException("Many methods from
 DB2DatabaseMetaData " + "are not
 yet implemented.");
 }

 /**
 * Are expressions in "ORDER BY" lists supported?
 *
 * &return true if so
 */
 public boolean supportsExpressionsInOrderBy() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can an "ORDER BY" clause use columns not in the SELECT?
 *
 * &return true if so
 */
 public boolean supportsOrderByUnrelated() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is some form of "GROUP BY" clause supported?
 *
 * &return true if so
 */
 public boolean supportsGroupBy() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a "GROUP BY" clause use columns not in the SELECT?
 *
 * &return true if so
 */
 public boolean supportsGroupByUnrelated() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a "GROUP BY" clause add columns not in the SELECT,
 * provided it specifies all the columns in the SELECT?
 *
 * &return true if so
 */
 public boolean supportsGroupByBeyondSelect() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**

 * Is the escape character in "LIKE" clauses supported?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsLikeEscapeClause() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are multiple ResultSets from a single execute supported?
 *
 * &return true if so
 */
 public boolean supportsMultipleResultSets() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can we have multiple transactions open at once (on different
 * connections)?
 *
 * &return true if so
 */
 public boolean supportsMultipleTransactions() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can columns be defined as non-nullable?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsNonNullableColumns() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is the ODBC Minimum SQL grammar supported?
 *
 * All JDBC compliant drivers must return true.
 *
 * &return true if so
 */
 public boolean supportsMinimumSQLGrammar() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is the ODBC Core SQL grammar supported?
 *

 * &return true if so
 */
 public boolean supportsCoreSQLGrammar() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is the ODBC Extended SQL grammar supported?
 *
 * &return true if so
 */
 public boolean supportsExtendedSQLGrammar() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is the ANSI92 entry level SQL grammar supported?
 *
 * All JDBC compliant drivers must return true.
 *
 * &return true if so
 */
 public boolean supportsANSI92EntryLevelSQL() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is the ANSI92 intermediate SQL grammar supported?
 *
 * &return true if so
 */
 public boolean supportsANSI92IntermediateSQL() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is the ANSI92 full SQL grammar supported?
 *
 * &return true if so
 */
 public boolean supportsANSI92FullSQL() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is the SQL Integrity Enhancement Facility supported?
 *
 * &return true if so
 */
 public boolean supportsIntegrityEnhancementFacility() throws
 SQLException {
 throw new SQLException("Many methods from DB2Database
 MetaData " + "are not yet implemented.");

 }

 /**
 * Is some form of outer join supported?
 *
 * &return true if so
 */
 public boolean supportsOuterJoins() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are full nested outer joins supported?
 *
 * &return true if so
 */
 public boolean supportsFullOuterJoins() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is there limited support for outer joins? (This will be true
 * if supportFullOuterJoins is true.)
 *
 * &return true if so
 */
 public boolean supportsLimitedOuterJoins() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the database vendor's preferred term for "schema"?
 *
 * &return the vendor term
 */
 public String getSchemaTerm() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the database vendor's preferred term for "procedure"?
 *
 * &return the vendor term
 */
 public String getProcedureTerm() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the database vendor's preferred term for "catalog"?
 *
 * &return the vendor term
 */
 public String getCatalogTerm() throws SQLException {

 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Does a catalog appear at the start of a qualified table name?
 * (Otherwise it appears at the end.)
 *
 * &return true if it appears at the start
 */
 public boolean isCatalogAtStart() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the separator between catalog and table name?
 *
 * &return the separator string
 */
 public String getCatalogSeparator() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a schema name be used in a data manipulation statement?
 *
 * &return true if so
 */
 public boolean supportsSchemasInDataManipulation() throws SQLException{
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a schema name be used in a procedure call statement?
 *
 * &return true if so
 */
 public boolean supportsSchemasInProcedureCalls() throws SQLException{
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a schema name be used in a table definition statement?
 *
 * &return true if so
 */
 public boolean supportsSch emasInTableDefinitions() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a schema name be used in an index definition statement?
 *

 * &return true if so
 */
 public boolean supportsSchemasInIndexDefinitions() throws SQLException{
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a schema name be used in a privilege definition statement?
 *
 * &return true if so
 */
 public boolean supportsSchemasInPrivilegeDefinitions() throws
 SQLException { throw new SQLException("Many methods
 from DB2DatabaseMetaData " + "are not yet implemented.");
 }

 /**
 * Can a catalog name be used in a data manipulation statement?
 *
 * &return true if so
 */
 public boolean supportsCatalogsInDataManipulation() throws SQLException{
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a catalog name be used in a procedure call statement?
 *
 * &return true if so
 */
 public boolean supportsCatalogsInProcedureCalls() throws SQLException{
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a catalog name be used in a table definition statement?
 *
 * &return true if so
 */
 public boolean supportsCatalogsInTableDefinitions() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a catalog name be used in an index definition statement?
 *
 * &return true if so
 */
 public boolean supportsCatalogsInIndexDefinitions() throws SQLException{
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can a catalog name be used in a privilege definition statement?

 *
 * &return true if so
 */
 public boolean supportsCatalogsInPrivilegeDefinitions() throws
 SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is positioned DELETE supported?
 *
 * &return true if so
 */
 public boolean supportsPositionedDelete() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is positioned UPDATE supported?
 *
 * &return true if so
 */
 public boolean supportsPositionedUpdate() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is SELECT for UPDATE supported?
 *
 * &return true if so
 */
 public boolean supportsSelectForUpdate() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are stored procedure calls using the stored procedure escape
 * syntax supported?
 *
 * &return true if so
 */
 public boolean supportsStoredProcedures() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are subqueries in comparison expressions supported?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsSubqueriesInComparisons() throws SQLException {

 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are subqueries in exists expressions supported?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsSubqueriesInExists() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented."
 }

 /**
 * Are subqueries in "in" statements supported?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsSubqueriesInIns() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are subqueries in quantified expressions supported?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsSubqueriesInQuantifieds() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are correlated subqueries supported?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsCorrelatedSubqueries() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is SQL UNION supported?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */

 public boolean supportsUnion() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is SQL UNION ALL supported?
 *
 * A JDBC compliant driver always returns true.
 *
 * &return true if so
 */
 public boolean supportsUnionAll() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can cursors remain open across commits?
 *
 * &return true if so
 * &see Connection#disableAutoClose
 */
 public boolean supportsOpenCursorsAcrossCommit() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can cursors remain open across rollbacks?
 *
 * &return true if so
 * &see Connection#disableAutoClose
 */
 public boolean supportsOpenCursorsAcrossRollback() throws SQLException{
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can statements remain open across commits?
 *
 * &return true if so
 * &see Connection#disableAutoClose
 */
 public boolean supportsOpenStatementsAcrossCommit() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Can statements remain open across rollbacks?
 *
 * &return true if so
 * &see Connection#disableAutoClose
 */
 public boolean supportsOpenStatementsAcrossRollback() throws
 SQLException {

 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }
//--
 // The following group of methods exposes various limitations
 // based on the target database with the current driver.
 // Unless otherwise specified, a result of zero means there is no
 // limit, or the limit is not known.

 /**
 * How many hex characters can you have in an inline binary literal?
 *
 * &return max literal length
 */
 public int getMaxBinaryLiteralLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the max length for a character literal?
 *
 * &return max literal length
 */
 public int getMaxCharLiteralLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the limit on column name length?
 *
 * &return max literal length
 */
 public int getMaxColumnNameLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum number of columns in a "GROUP BY" clause?
 *
 * &return max number of columns
 */
 public int getMaxColumnsInGroupBy() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum number of columns allowed in an index?
 *
 * &return max columns
 */
 public int getMaxColumnsInIndex() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum number of columns in an "ORDER BY" clause?
 *
 * &return max columns
 */
 public int getMaxColumnsInOrderBy() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum number of columns in a "SELECT" list?
 *
 * &return max columns
 */
 public int getMaxColumnsInSelect() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum number of columns in a table?
 *
 * &return max columns
 */
 public int getMaxColumnsInTable() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * How many active connections can we have at a time to this database?
 *
 * &return max connections
 */
 public int getMaxConnections() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum cursor name length?
 *
 * &return max cursor name length in bytes
 */
 public int getMaxCursorNameLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum length of an index (in bytes)?
 *
 * &return max index length in bytes
 */
 public int getMaxIndexLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");

 }

 /**
 * What's the maximum length allowed for a schema name?
 *
 * &return max name length in bytes
 */
 public int getMaxSchemaNameLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum length of a procedure name?
 *
 * &return max name length in bytes
 */
 public int getMaxProcedureNameLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum length of a catalog name?
 *
 * &return max name length in bytes
 */
 public int getMaxCatalogNameLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum length of a single row?
 *
 * &return max row size in bytes
 */
 public int getMaxRowSize() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Did getMaxRowSize() include LONGVARCHAR and LONGVARBINARY
 * blobs?
 *
 * &return true if so
 */
 public boolean doesMaxRowSizeIncludeBlobs() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum length of a SQL statement?
 *
 * &return max length in bytes
 */
 public int getMaxStatementLength() throws SQLException {

 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * How many active statements can we have open at one time to this
 * database?
 *
 * &return the maximum
 */
 public int getMaxStatements() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum length of a table name?
 *
 * &return max name length in bytes
 */
 public int getMaxTableNameLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum number of tables in a SELECT?
 *
 * &return the maximum
 */
 public int getMaxTablesInSelect() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * What's the maximum length of a user name?
 *
 * &return max name length in bytes
 */
 public int getMaxUserNameLength() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }
//---
 /**
 * What's the database's default transaction isolation level? The
 * values are defined in java.sql.Connection.
 *
 * &return the default isolation level
 * &see Connection
 */
 public int getDefaultTransactionIsolation() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**

 * Are transactions supported? If not, commit is a no-op and the
 * isolation level is TRANSACTION_NONE.
 *
 * &return true if transactions are supported
 */
 public boolean supportsTransactions() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Does the database support the given transaction isolation level?
 *
 * ¶m level the values are defined in java.sql.Connection
 * &return true if so
 * &see Connection
 */
 public boolean supportsTransactionIsolationLevel(int level)
 throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are both data definition and data manipulation statements
 * within a transaction supported?
 *
 * &return true if so
 */
 public boolean supportsDataDefinitionAndDataManipulationTransactions()
 throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Are only data manipulation statements within a transaction
 * supported?
 *
 * &return true if so
 */
 public boolean supportsDataManipulationTransactionsOnly()
 throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Does a data definition statement within a transaction force the
 * transaction to commit?
 *
 * &return true if so
 */
 public boolean dataDefinitionCausesTransactionCommit()
 throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Is a data definition statement within a transaction ignored?
 *
 * &return true if so
 */
 public boolean dataDefinitionIgnoredInTransactions()
 throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of stored procedures available in a
 * catalog.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schemaPattern a schema name pattern; "" retrieves those
 * without a schema
 * ¶m procedureNamePattern a procedure name pattern
 * &return ResultSet each row is a procedure description
 * &see #getSearchStringEscape
 */
 public ResultSet getProcedures(String catalog, String schemaPattern,
 String procedureNamePattern) throws
 SQLException {throw new SQLException("Many
 methods from DB2DatabaseMetaData " + "are not yet implemented.");
 }

 /**
 * Get a description of a catalog's stored procedure parameters
 * and result columns.
 *
 * <P>Only descriptions matching the schema, procedure and
 * parameter name criteria are returned. They are ordered by
 * PROCEDURE_SCHEM and PROCEDURE_NAME. Within this, the return value,
 * if any, is first. Next are the parameter descriptions in call
 * order. The column descriptions follow in column number order.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schemaPattern a schema name pattern; "" retrieves those
 * without a schema
 * ¶m procedureNamePattern a procedure name pattern
 * ¶m columnNamePattern a column name pattern
 * &return ResultSet each row is a stored procedure parameter or
 * column description
 * &see #getSearchStringEscape
 */
 public ResultSet getProcedureColumns(String catalog,
 String schemaPattern,
 String procedureNamePattern,
 String columnNamePattern) throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of tables available in a catalog.
 *

 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schemaPattern a schema name pattern; "" retrieves those
 * without a schema
 * ¶m tableNamePattern a table name pattern
 * ¶m types a list of table types to include; null returns all
 * types
 * &return ResultSet each row is a table description
 * &see #getSearchStringEscape
 */
 public ResultSet getTables(String catalog, String schemaPattern,
 String tableNamePattern, String types[]) throws
 SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData
 " + "are not yet implemented.");
 }

 /**
 * Get the schema names available in this database. The results
 * are ordered by schema name.
 *
 * <P>The schema column is:
 *
 * TABLE_SCHEM String => schema name
 *
 *
 * &return ResultSet each row has a single String column that is a
 * schema name
 */
 public ResultSet getSchemas() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get the catalog names available in this database. The results
 * are ordered by catalog name.
 *
 * <P>The catalog column is:
 *
 * TABLE_CAT String => catalog name
 *
 *
 * &return ResultSet each row has a single String column that is a
 * catalog name
 */
 public ResultSet getCatalogs() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get the table types available in this database. The results
 * are ordered by table type.
 *
 * &return ResultSet each row has a single String column that is a
 * table type
 */
 public ResultSet getTableTypes() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +

 "are not yet implemented.");
 }

 /**
 * Get a description of table columns available in a catalog.
 *
 * <P>Only column descriptions matching the catalog, schema, table,
 * and column name criteria are returned. They are ordered by
 * TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schemaPattern a schema name pattern; "" retrieves those
 * without a schema
 * ¶m tableNamePattern a table name pattern
 * ¶m columnNamePattern a column name pattern
 * &return ResultSet each row is a column description
 * &see #getSearchStringEscape
 */
 public ResultSet getColumns(String catalog, String schemaPattern,
 String tableNamePattern, String
 columnNamePattern) throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of the access rights for a table's columns.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schema a schema name; "" retrieves those without a schema
 * ¶m table a table name
 * ¶m columnNamePattern a column name pattern
 * &return ResultSet each row is a column privilege description
 * &see #getSearchStringEscape
 */
 public ResultSet getColumnPrivileges(String catalog, String schema,
 String table, String columnNamePattern) throws
 SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData
 " + "are not yet implemented.");
 }

 /**
 * Get a description of the access rights for each table available
 * in a catalog.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schemaPattern a schema name pattern; "" retrieves those
 * without a schema
 * ¶m tableNamePattern a table name pattern
 * &return ResultSet each row is a table privilege description
 * &see #getSearchStringEscape
 */
 public ResultSet getTablePrivileges(String catalog, String
 schemaPattern, String tableNamePattern) throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData
 " + "are not yet implemented.");
 }

 /**
 * Get a description of a table's optimal set of columns that
 * uniquely identifies a row. They are ordered by SCOPE.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schema a schema name; "" retrieves those without a schema
 * ¶m table a table name
 * ¶m scope the scope of interest; use same values as SCOPE
 * ¶m nullable include columns that are nullable?
 * &return ResultSet each row is a column description
 */
 public ResultSet getBestRowIdentifier(String catalog, String schema,
 String table, int scope, boolean
 nullable) throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of a table's columns that are automatically
 * updated when any value in a row is updated. They are
 * unordered.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schema a schema name; "" retrieves those without a schema
 * ¶m table a table name
 * &return ResultSet each row is a column description
 */
 public ResultSet getVersionColumns(String catalog, String schema,
 String table) throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of a table's primary key columns. They
 * are ordered by COLUMN_NAME.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schema a schema name pattern; "" retrieves those
 * without a schema
 * ¶m table a table name
 * &return ResultSet each row is a primary key column description
 */
 public ResultSet getPrimaryKeys(String catalog, String schema,
 String table) throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of the primary key columns that are
 * referenced by a table's foreign key columns (the primary keys
 * imported by a table). They are ordered by PKTABLE_CAT,
 * PKTABLE_SCHEM, PKTABLE_NAME, and KEY_SEQ.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schema a schema name pattern; "" retrieves those

 * without a schema
 * ¶m table a table name
 * &return ResultSet each row is a primary key column description
 * &see #getExportedKeys
 */
 public ResultSet getImportedKeys(String catalog, String schema,
 String table) throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of foreign key columns that reference a
 * table's primary key columns (the foreign keys exported by a
 * table). They are ordered by FKTABLE_CAT, FKTABLE_SCHEM,
 * FKTABLE_NAME, and KEY_SEQ.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schema a schema name pattern; "" retrieves those
 * without a schema
 * ¶m table a table name
 * &return ResultSet each row is a foreign key column description
 * &see #getImportedKeys
 */
 public ResultSet getExportedKeys(String catalog, String schema,
 String table) throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of the foreign key columns in the foreign key
 * table that reference the primary key columns of the primary key
 * table (describe how one table imports another's key.) This
 * should normally return a single foreign key/primary key pair
 * (most tables only import a foreign key from a table once.) They
 * are ordered by FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, and
 * KEY_SEQ.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schema a schema name pattern; "" retrieves those
 * without a schema
 * ¶m table a table name
 * &return ResultSet each row is a foreign key column description
 * &see #getImportedKeys
 */
 public ResultSet getCrossReference(String primaryCatalog, String
 primarySchema, String primaryTable,
 String foreignCatalog, String
 foreignSchema, String foreignTable)
 throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of all the standard SQL types supported by
 * this database. They are ordered by DATA_TYPE and then by how

 * closely the data type maps to the corresponding JDBC SQL type.
 *
 * &return ResultSet each row is a SQL type description
 */
 public ResultSet getTypeInfo() throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }

 /**
 * Get a description of a table's indices and statistics. They are
 * ordered by NON_UNIQUE, TYPE, INDEX_NAME, and ORDINAL_POSITION.
 *
 * ¶m catalog a catalog name; "" retrieves those without a catalog
 * ¶m schema a schema name pattern; "" retrieves those without a
 * schema
 * ¶m table a table name
 * ¶m unique when true, return only indices for unique values;
 * when false, return indices regardless of whether unique or not
 * ¶m approximate when true, result is allowed to reflect
 * approximate or out of data values; when false, results are requested
 * to be accurate
 * &return ResultSet each row is an index column description
 */
 public ResultSet getIndexInfo(String catalog, String schema, String
 table, boolean unique, boolean approximate)
 throws SQLException {
 throw new SQLException("Many methods from DB2DatabaseMetaData " +
 "are not yet implemented.");
 }
}

Listing C.5 DB2Statement.java.

/* db2jdbc.sql.DB2Statement
 *
 * Copyright (c) 1996 Heiner Braun
 * Based on mSQL stuff by George Reese (borg&imaginary.com).
 * Beft original comments; my comments are marked with _hb_.
 * DB2 implementation of the JDBC Statement interface.
 */

package db2jdbc.sql;

import java.sql.SQLException;
import java.sql.SQLWarning;
import java.sql.ResultSet;
import db2jdbc.sql.db2access.DB2CLI;
import db2jdbc.sql.db2access.DB2CLIException;

public class DB2Statement implements java.sql.Statement {
 /**
 * A connection object to direct information to
 */
 private DB2Connection connection;
 /**
 * A result set returned from this query or whatever
 */

 private DB2ResultSet result;
 /**
 * The max field size for mSQL
 * NOTE: I have no idea what this should default to
 */
 private int max_field_size = 0;
 /**
 * The max rows supported by mSQL
 */
 private int max_rows = 0;
 /**
 * The number of seconds the driver will allow for a SQL statement to
 * execute before giving up; the default is to wait forever (0)
 */
 private int timeout = 0;
 /**
 * Constructs a new iMsqlStatement object.
 * ¶m conn the iMsqlConnection object
 */
 public DB2Statement(DB2Connection conn) {
 connection = conn;
 }

 /**
 * JDBC draft specification method to execute the specified SQL
 * query and gives back a result set.
 * &see java.sql.Statement#executeQuery
 * &exception SQLException raised for any MsqlException
 * ¶m sql the SQL statement string
 * &return the result set from the query
 */
 public ResultSet executeQuery(String sql)
 throws SQLException {
 result = null;
 // return new DB2ResultSet(connection.executeMsql(sql));

 // throws exception if necessary
 return new DB2ResultSet(connection.db2ExecSQL(sql));
 }

 /**
 * JDBC 0.54 specification method for executing simple UPDATE, INSERT,
 * DELETE, etc. statements which do not return ResultSet's. The
 * return value is not particularly meaningful in mSQL since you cannot
 * get information on the number of rows affected by such an action
 * in mSQL.
 * &see java.sql.Statement#executeUpdate
 * &exception java.sql.SQLException thrown when an error occurs
 * executing the SQL
 * &return nr of rows
 */
 public int executeUpdate(String sql) throws SQLException {
 // _hb_ maybe like this?
 DB2CLI db2CLI;

 try {
 db2CLI = connection.db2ExecSQL(sql);
 return db2CLI.SQLRowCount();
 }

 catch(DB2CLIException e) {
 db2CLI = null;
 throw new SQLException("DB2CLI exception: " + e.getMessage());
 }
 }

 /**
 * JDBC draft specification method to close off any open result sets
 * for this Statement. This is a non-issue with mSQL, but portable
 * code should still be calling it.
 * &see java.sql.Statement#close
 */
 public void close() throws SQLException {
 }

 /**
 * JDBC draft specification method for getting the max field size
 * supported by mSQL.
 * &see java.sql.Statement#getMaxFieldSize
 * &return the value of max field size
 */
 public int getMaxFieldSize() throws SQLException {
 return max_field_size;
 }

 /**
 * JDBC draft specification method for setting the max field size.
 * &see java.sql.Statement#setMaxFieldSize
 * ¶m max the maximum field size
 */
 public void setMaxFieldSize(int max) throws SQLException {
 max_field_size = max;
 }

 /**
 * JDBC draft specification method for getting the max rows supported
 * by mSQL.
 * &see java.sql.Statement#getMaxRows
 * &return the maximum rows supported by mSQL
 */
 public int getMaxRows() throws SQLException {
 return max_rows;
 }

 /**
 * JDBC draft specification method for setting the max rows.
 * &see java.sql.Statement.setMaxRows
 * ¶m max the max rows
 */
 public void setMaxRows(int max) throws SQLException {
 max_rows = max;
 }

 /**
 * JDBC draft specification method for escape processing.
 * This boggles me.
 * &see java.sql.Statement#setEscapeProcessing
 * ¶m enable this does nothing right now

 */
 public void setEscapeProcessing(boolean enable)
 throws SQLException {
 throw new SQLException("No support for escape processing.");
 }

 /**
 * JDBC draft specification method for getting the query timeout, which
 * is the number of seconds the driver waits before giving up on the
 * query.
 * &see java.sql.Statement#getQueryTimeout
 * &see setQueryTimeout
 * &return the timeout value for this statement
 */
 public int getQueryTimeout() throws SQLException {
 return timeout;
 }

 /**
 * JDBC draft specification method for setting the query timeout.
 * &see java.sql.Statement#setQueryTimeout
 * &see getQueryTimeout
 * ¶m x the new query timeout value
 */
 public void setQueryTimeout(int x) throws SQLException {
 timeout = x;
 }

 /**
 * JDBC draft specification method for allowing one thread to cancel
 * this statement which may be running in another thread. Right now,
 * there is nothing to cancel with mSQL JDBC. Maybe I will make it do
 * something if I get actual processing in this class!
 * &see java.sql.Statement#cancel
 */
 public void cancel() {
 }

 /**
 * JDBC draft specification for getting the chain of warnings for this
 * statement.
 * &see java.sql.Statement#getWarnings
 * &return the chain of warnings
 */
 public final SQLWarning getWarnings() throws SQLException {
 return null;
 }

 /**
 * JDBC draft specification for clearing the warning chain.
 * &see java.sql.Statement#clearWarnings
 */
 public void clearWarnings() throws SQLException {
 }

 /**
 * JDBC 0.65 specification for setting cursor names.
 * mSQL does not support cursors.
 */

 public void setCursorName(String unused) throws SQLException {
 throw new SQLException("No support for cursors.");
 }
 //---------- Multiple Results --------------

 /**
 * JDBC draft specification method to execute an SQL statement and
 * return true if a result set was gotten, false otherwise. Note that
 * proper mSQL use of this method should always result in a
 * false return value.
 * &see java.sql.Statement#execute
 * &exception SQLException raised for any MsqlException encountered
 * ¶m sql the SQL to be executed
 * &return true if there is a result set available
 */
 public boolean execute(String sql) throws SQLException {
 throw new SQLException("No support for multiple result sets.");
 }

 /**
 * JDBC 0.54 specification method for obtaining a result set from a
 * statement object.
 * &see java.sql.Statement#getResultSet
 * &return null if no result set is available, otherwise a result set
 */
 public ResultSet getResultSet() throws SQLException {
 throw new SQLException("No support for multiple result sets.");
 }

 /**
 * Returns -1 always for mSQL.
 * &see java.sql.Statement#getUpdateCount
 * &return -1
 */
 public int getUpdateCount() throws SQLException {
 throw new SQLException("No support for multiple result sets.");
 }

 /**
 * JDBC 0.54 specification for determining if any more result sets
 * are left from a database statement. Should always return false for
 * mSQL.
 * &see java.sql.Statement#getMoreResults
 * &return true if rows are to be gotten
 */
 public boolean getMoreResults() throws SQLException {
 throw new SQLException("No support for multiple result sets.");
 }
}

Listing C.6 DB2CLI.java.

/* db2jdbc.sql.db2access.DB2CLI
 *
 * Copyright (c) 1996 Heiner Braun
 * braunhr&minnie.informatik.uni-stuttgart.de
 *
 * This class provides the methods needed by the DB2 implementations

 * of the JDBC interfaces. The file DB2CLIImpl contains the native C-
 * code.
 *
 */

package db2jdbc.sql.db2access;

public class DB2CLI
{
 static { System.loadLibrary("db2clijava"); }

 // Until now, every DB2CLI object supports only one statement.
 private long sql_henv = 0;
 private long sql_hdbc = 0;
 private long sql_hstmt = 0;
 private short sql_nresultcols = 0;
 private long[] sql_collen = new long[100];
 public DB2CLI() {
 //System.out.println("DB2CLI Object is created!");
 }
//---
 // stuff for DB2Connection

 public native void getEnv() throws DB2CLIException;
 public native void freeEnv();

 public native void openConnection(String login,
 String passwd,
 String database) throws
 DB2CLIException;
 public native void closeConnection();
 public native void SQLExecQuery(String query) throws DB2CLIException;
 public native int SQLRowCount() throws DB2CLIException;
//---
 // stuff for DB2ResultSetMetaData

 public int SQLNumResultCols() throws DB2CLIException {
 return (int) sql_nresultcols;
 }

 public native boolean ColSearchable(int column) throws DB2CLIException;
 public native boolean ColNullable(int column) throws DB2CLIException;
 public native int ColDisplaySize(int column) throws DB2CLIException;
 public native String ColLabel(int column) throws DB2CLIException;
 public native String ColName(int column) throws DB2CLIException;
 public native String ColSchemaName(int column) throws DB2CLIException;
 public native String ColTableName(int column) throws DB2CLIException;
 public native String ColCatalogName(int column) throws DB2CLIException;
 // see java.sql.Types
 public native int ColType(int column) throws DB2CLIException;
 public native String ColTypeName(int column) throws DB2CLIException;
//---
 // stuff for DB2ResultSet

 public native boolean SQLFetch() throws DB2CLIException;
 public native String getString(int column) throws DB2CLIException;
}

Listing C.7 DB2CLIException.java.

package db2jdbc.sql.db2access;

public class DB2CLIException extends Exception {
 public DB2CLIException() { super(); }
 public DB2CLIException(String s) { super(s); }
}

Listing C.8 DB2CLIImpl.c.

/*---
 *
 * Copyright (c) 1996 Heiner Braun
 * braunhr&minnie.informatik.uni-stuttgart.de
 *
 * File: DB2CLIImpl.c
 * Contains native C methods for DB2CLI.java.
 * Many code pieces were copied from the IBM DB2 CLI examples.
 *
 *
 */

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <javaString.h>
#include <StubPreamble.h>
#include "sqlcli1.h"
#include "db2jdbc_sql_db2access_DB2CLI.h"

#define MAX_UID_LENGTH 18
#define MAX_PWD_LENGTH 30
#define MAX_STMT_LEN 255
#define MAXCOLS 100

#ifndef max
#define max(a,b) (a > b ? a : b)
#endif

void printErrorMsg(struct Hdb2jdbc_sql_db2access_DB2CLI *,
 char *, SQLRETURN);
/* ==
 *
 * FUNCTIONS FOR DB2Connection
 *
 * ==
 */

void db2jdbc_sql_db2access_DB2CLI_getEnv(struct Hdb2jdbc_sql_db2
 access_DB2CLI *this)
{
 SQLRETURN rc;
 SQLHENV henv;

 rc = SQLAllocEnv(&(henv)); /* allocate an environment handle */
 unhand(this)->sql_henv = henv;

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "Allocation of environment handle fails", rc);
 SignalError(0,
 "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.getEnv: Allocation of environment handle fails.");
 }

 return;
}
/*---
 *
 *
 *
 */
void
db2jdbc_sql_db2access_DB2CLI_freeEnv(struct Hdb2jdbc_sql_db2access_DB2CLI
 *this)
{
 SQLHENV henv;

 henv = unhand(this)->sql_henv;
 SQLFreeEnv(henv);

 return;
}
/*---
 *
 *
 *
 */
void
db2jdbc_sql_db2access_DB2CLI_openConnection(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this,
 struct Hjava_lang_String *login,
 struct Hjava_lang_String *passwd,
 struct Hjava_lang_String
 *database)
{
 SQLRETURN rc;
 SQLCHAR uid[MAX_UID_LENGTH + 1];
 SQLCHAR pwd[MAX_PWD_LENGTH + 1];
 SQLCHAR db[SQL_MAX_DSN_LENGTH + 1];
 SQLHENV henv;
 SQLHDBC hdbc;

 if (!login || !passwd || !database) {
 SignalError(0,
 "db2jdbc/sql/db2access/
 DB2CLIException",
 "DB2CLI.openConnection: Wrong
 parameters.");
 return;
 }

 javaString2CString(login, uid, sizeof(uid));
 javaString2CString(passwd, pwd, sizeof(pwd));
 javaString2CString(database, db, sizeof(db));

 henv = unhand(this)->sql_henv;

 /* printf("DB2CLIImpl.openConnection henv: %li\n",henv); */

 /* allocate a connection handle */
 rc = SQLAllocConnect(henv, &hdbc);
 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "ERROR while allocating a connection handle", rc);
 SignalError(0,
 "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.openConnection: ERROR while allocating a
 connection handle.");
 return;
 }

 unhand(this)->sql_hdbc = hdbc;

 /* Set AUTOCOMMIT ON */
 rc = SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_ON);
 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "ERROR while setting AUTOCOMMIT ON", rc);
 SignalError(0,
 "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.openConnection: ERROR while setting AUTOCOMMIT
 ON.");
 return;
 }

 /* printf("db: %s\nuid: %s\npwd: %s\n",db,uid,pwd); */
 rc = SQLConnect(hdbc, db, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);
 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "Error while connecting to database", rc);
 SQLDisconnect(hdbc);
 SQLFreeConnect(hdbc);
 SignalError(0,
 "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.openConnection: ERROR while connecting to
 database.");
 return;
 }

 /* printf("DB2CLIImpl.c openConnection: Connected...\n"); */

 return;
}
/*---
 *
 *
 *
 */
void
db2jdbc_sql_db2access_DB2CLI_closeConnection(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this)
{
 SQLHDBC hdbc = unhand(this)->sql_hdbc;
 SQLDisconnect(hdbc);
 SQLFreeConnect(hdbc);
}

/*---
 *
 *
 *
 */

void
db2jdbc_sql_db2access_DB2CLI_SQLExecQuery(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this, struct Hjava_lang_String *query)
{
 SQLRETURN rc;
 SQLINTEGER displaysize;
 SQLSMALLINT nresultcols;
 SQLCHAR sqlstr[500];
 SQLHDBC hdbc = unhand(this)->sql_hdbc;
 SQLHSTMT hstmt;
 int i;

 if (!query) {
 SignalError(0,
 "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.SQLExecQuery: Parameter error.");
 return;
 }

 javaString2CString(query, sqlstr, sizeof(sqlstr));

 /* printf("DB2CLIImpl.SQLExecQuery hdbc: %li\n",hdbc); */

 SQLAllocStmt(hdbc, &hstmt); /* allocate a statement handle */

 unhand(this)->sql_hstmt = hstmt;

 /* printf("DB2CLIImpl.SQLExecQuery hstmt: %li\n",hstmt); */

 rc = SQLExecDirect(hstmt, sqlstr, SQL_NTS);
 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "Error while executing SQL query", rc);
 SQLFreeStmt(hstmt, SQL_DROP);
 SignalError(0,
 "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.SQLExecQuery: Error while executing SQL query.");
 return;
 }

 rc = SQLNumResultCols(hstmt, &nresultcols);
 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLNumResultCols fails", rc);
 SQLFreeStmt(hstmt, SQL_DROP);
 SignalError(0,
 "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.SQLExecQuery: SQLNumResultCols fails.");
 return;
 }

 unhand(this)->sql_nresultcols = nresultcols;

 for (i = 0; i < nresultcols; i++) {

 /* get display length for column. */
 SQLColAttributes(hstmt, i + 1, SQL_COLUMN_DISPLAY_SIZE, NULL, 0,
 NULL, &displaysize);
 (unhand(unhand(this)->sql_collen)->body)[i] = displaysize + 1;
 }

 return;
}
/*---
 *
 *
 *
 */
long
db2jdbc_sql_db2access_DB2CLI_SQLRowCount(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this)
{
 SQLRETURN rc;
 SQLINTEGER rowcount;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLRowCount(hstmt, &rowcount);
 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "Nr of rows could not be received.", rc);
 SignalError(0,
 "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.SQLRowCount: Nr of rows could not be
 received.");
 return 0;
 }

 return (long) rowcount;
}
/* ==
 *
 * FUNCTIONS FOR DB2ResultSetMetaData
 *
 * ==
 */
/*---
 *
 *
 *
 */
long
db2jdbc_sql_db2access_DB2CLI_ColSearchable(struct
Hdb2jdbc_sql_db2access_DB2CLI *this, long column)
{
 SQLRETURN rc;
 SQLINTEGER searchable;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_SEARCHABLE,
 NULL, 0, NULL, &searchable);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",

 "DB2CLI.ColSearchable: SQLColAttributes fails.");
 return (long) 0;
 }
 if (searchable == SQL_SEARCHABLE) return (long) 0;
 else return (long) 1;
}
/*---
 *
 *
 *
 */
long
db2jdbc_sql_db2access_DB2CLI_ColNullable(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this, long column)
{
 SQLRETURN rc;
 SQLINTEGER nullable;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_NULLABLE,
 NULL, 0, NULL, &nullable);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.ColNullable: SQLColAttributes fails.");
 return (long) 0;
 }
 if (nullable == SQL_NULLABLE) return (long) 0;
 else return (long) 1;
}
/*---
 *
 *
 *
 */
long
db2jdbc_sql_db2access_DB2CLI_ColDisplaySize(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this,long column)
{
 SQLRETURN rc;
 SQLINTEGER displaySize;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_DISPLAY_SIZE,
 NULL, 0, NULL, &displaySize);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.ColDisplaySize: SQLColAttributes fails.");
 return (long) 0;
 }

 return (long) displaySize;
}

/*---
 *

 *
 *
 */
Hjava_lang_String *
db2jdbc_sql_db2access_DB2CLI_ColLabel(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this, long column)
{
 SQLRETURN rc;
 SQLCHAR retString[SQL_MAX_DSN_LENGTH];
 SQLSMALLINT length;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_LABEL,
 retString, sizeof(retString), &length, 0);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.ColLabel: SQLColAttributes fails.");
 }

 return makeJavaString(retString, strlen(retString));
}
/*---
 *
 *
 *
 */
Hjava_lang_String *
db2jdbc_sql_db2access_DB2CLI_ColName(struct Hdb2jdbc_sql_db2access_DB2CLI
 *this, long column)
{
 SQLRETURN rc;
 SQLCHAR retString[SQL_MAX_DSN_LENGTH];
 SQLSMALLINT length;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_NAME,
 retString, sizeof(retString), &length, 0);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.ColName: SQLColAttributes fails.");
 }

 return makeJavaString(retString, strlen(retString));
}
/*---
 *
 *
 *
 */
Hjava_lang_String *
db2jdbc_sql_db2access_DB2CLI_ColSchemaName(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this, long column)
{
 SQLRETURN rc;

 SQLCHAR retString[SQL_MAX_DSN_LENGTH];
 SQLSMALLINT length;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_SCHEMA_NAME,
 retString, sizeof(retString), &length, 0);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.ColSchemaName: SQLColAttributes fails.");
 }

 return makeJavaString(retString, strlen(retString));
}
/*---
 *
 *
 *
 */
Hjava_lang_String *
db2jdbc_sql_db2access_DB2CLI_ColTableName(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this, long column)
{
 SQLRETURN rc;
 SQLCHAR retString[SQL_MAX_DSN_LENGTH];
 SQLSMALLINT length;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_TABLE_NAME,
 retString, sizeof(retString), &length, 0);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.ColTableName: SQLColAttributes fails.");
 }

 return makeJavaString(retString, strlen(retString));
}
/*---
 *
 *
 *
 */
Hjava_lang_String *
db2jdbc_sql_db2access_DB2CLI_ColCatalogName(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this, long column)
{
 SQLRETURN rc;
 SQLCHAR retString[SQL_MAX_DSN_LENGTH];
 SQLSMALLINT length;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_CATALOG_NAME,
 retString, sizeof(retString), &length, 0);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);

 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.ColCatalogName: SQLColAttributes fails.");
 }

 return makeJavaString(retString, strlen(retString));
}
/*---
 *
 *
 *
 */
long
db2jdbc_sql_db2access_DB2CLI_ColType(struct Hdb2jdbc_sql_db2access_DB2CLI
 *this, long column)
{
 SQLRETURN rc;
 SQLINTEGER type;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_TYPE,
 NULL, 0, NULL, &type);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.ColType: SQLColAttributes fails.");
 return (long) 0;
 }

 /* match DB2 SQL types to JDBC types in java.sql.Types */
 switch (type) {
 case SQL_CHAR : return 1; break;
 case SQL_NUMERIC : return 2; break;
 case SQL_DECIMAL : return 3; break;
 case SQL_INTEGER : return 4; break;
 case SQL_SMALLINT : return 5; break;
 case SQL_FLOAT : return 6; break;
 case SQL_REAL : return 7; break;
 case SQL_DOUBLE : return 8; break;
 case SQL_DATE : return 91; break;
 case SQL_TIME : return 92; break;
 case SQL_TIMESTAMP : return 93; break;
 case SQL_VARCHAR : return 12; break;
 case SQL_LONGVARCHAR : return -1; break;
 case SQL_BINARY : return -2; break;
 case SQL_VARBINARY : return -3; break;
 case SQL_LONGVARBINARY : return -4; break;
 case SQL_BIGINT : return -5; break;
 case SQL_TINYINT : return -6; break;
 case SQL_BIT : return -7; break;
 default : return 1111; break;
 }
}

/*---
 *
 *
 *

 */
Hjava_lang_String *
db2jdbc_sql_db2access_DB2CLI_ColTypeName(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this, long column)
{
 SQLRETURN rc;
 SQLCHAR retString[SQL_MAX_DSN_LENGTH];
 SQLSMALLINT length;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 rc = SQLColAttributes(hstmt, column, SQL_COLUMN_TYPE_NAME,
 retString, sizeof(retString), &length, 0);

 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLColAttributes fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.ColTypeName: SQLColAttributes fails.");
 }

 return makeJavaString(retString, strlen(retString));
}
/* ==
 *
 * FUNCTIONS FOR DB2ResultSet
 *
 * ==
 */

/*---
 *
 *
 *
 */
long
db2jdbc_sql_db2access_DB2CLI_SQLFetch(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this)
{
 SQLRETURN rc;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;
 SQLSMALLINT nresultcols = unhand(this)->sql_nresultcols;

 if ((rc = SQLFetch(hstmt)) == SQL_SUCCESS) {
 return (long) 1;
 } else {

 SQLFreeStmt(hstmt, SQL_DROP); /* free statement handle */

 if (rc != SQL_NO_DATA_FOUND) {
 printErrorMsg(this, "SQLFetch fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.SQLFetch: SQLFetch fails.");
 }

 return (long) 0;
 }
}

/*---
 *

 *
 *
 */
Hjava_lang_String *
db2jdbc_sql_db2access_DB2CLI_getString(struct Hdb2jdbc_sql_
 db2access_DB2CLI *this, long column)
{
 SQLRETURN rc;
 SQLINTEGER collen = (unhand(unhand(this)->sql_collen)-
 >body)[column - 1];
 SQLCHAR *retString;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;
 SQLINTEGER length;

 retString = (SQLCHAR *) malloc((int)collen);

 rc = SQLGetData(hstmt, (SQLUSMALLINT)column, SQL_C_CHAR,
 retString, collen, &length);
 if (rc != SQL_SUCCESS) {
 printErrorMsg(this, "SQLGetData fails", rc);
 SignalError(0, "db2jdbc/sql/db2access/DB2CLIException",
 "DB2CLI.getString: SQLGetData fails.");
 }

 return makeJavaString(retString, strlen(retString));
}

/* ==
 *
 * LOCAL FUNCTIONS
 *
 * ==
 */

/*---
 *
 *
 *
 */
void printErrorMsg(struct Hdb2jdbc_sql_db2access_DB2CLI *this,
 char *msg, SQLRETURN rc)
{
 SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];
 SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];
 SQLINTEGER sqlcode;
 SQLSMALLINT length;
 SQLHENV henv = unhand(this)->sql_henv;
 SQLHDBC hdbc = unhand(this)->sql_hdbc;
 SQLHSTMT hstmt = unhand(this)->sql_hstmt;

 printf("DB2CLIImpl.c: %s\n", msg);

 switch (rc) {

 case SQL_SUCCESS:
 break;
 case SQL_INVALID_HANDLE:
 printf(" SQLRETURN indicates: Invalid Handle\n");

 break;
 case SQL_ERROR:
 printf(" SQLRETURN indicates: FATAL ERROR\n");
 break;
 case SQL_SUCCESS_WITH_INFO:
 printf(" SQLRETURN indicates: Warning Message\n");
 break;
 case SQL_NO_DATA_FOUND:
 printf(" SQLRETURN indicates: No Data Found\n");
 break;
 default:
 printf(" Unknown Return Code\n");
 }

 while (SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,
 SQL_MAX_MESSAGE_LENGTH + 1, &length) == SQL_SUCCESS) {
 printf(" ----------------------------------\n");
 printf(" SQLSTATE: %s\n", sqlstate);
 printf(" Native Error Code: %ld\n", sqlcode);
 printf(" %s \n", buffer);
 };

 return;
}

Table of Contents

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Table of Contents

Chapter Title Goes Here

Chapter X
Title Starts Here

Information content for Web pages is provided either manually or electronically. The manual approach involves
collecting information, organizing it, and typing or scanning it into the source files for hypertext pages. The electronic
approach takes advantage of existing information collections by linking the pages to specific data stores, or collections.
Using existing data to create new information views is one of the main ways to leverage your technology investment,
and is the subject of this chapter. Every organization with a modest level of computerization already has a large
collection of diverse, electronic information that can be used in an intranet-based system. In addition to examining these
sources, we’ll look at using data conversion, interface activities, and Web page retrieval techniques to update existing
databases or populate new ones. Before proceeding further, however, we need to understand what is meant by data and
information, and how we use these terms.

Is It Information or Data?

The U.S. Department of Defense Directive 5200.28 defines data as: “A representation of facts, concepts, information, or
instructions in a manner suitable for communication, interpretation, or processing by humans or by an AIS [Automated
Information System].”

A database professional, such as a Database Administrator or Developer, uses a much narrower definition, which says
that numbers and characters stored in electronic format have no meaning by themselves. After this “raw data” is
processed and interpreted, it becomes information.

Project: For the most part, we use data and information interchangeably, more in keeping with the DOD
directive. Furthermore, the source data for a hypertext page may have existed as information in a previous
incarnation; it is viewed as data from the perspective of the page creator. Figure 6.1 illustrates this idea.

Existing Data Sources

The most common sources of data used in constructing Web pages are:

Material from any of these sources can be included, either in its entirety or in selected portions, to deliver the required
content. Since each of these kinds of data is stored in a different format, accessing and displaying the information is not a
straightforward procedure for the page builder. First, we’ll examine each type, along with the common format used to
store it, and then go on to the methods employed to incorporate the data seamlessly into a hypertext page.

Documents

There are two types of documents that we’ll examine here: plain text and word-processed text.

Tip: This text is a sample for tip text. We will need to have an icon place before it, just like projects. It has 3p
before it, as just enough room for the icon, which should be simple.

Table 1.1Table Caption

Table Head

Table text

Table Text

Table Text

Table of Contents

 Java Database Programming with
JDBC
by Pratik Patel
Coriolis, The Coriolis Group
ISBN: 1576100561 Pub
Date: 10/01/96

Table of Contents

Index

Note: Page numbers in bold refer to program code listings.

Symbols

@ , 151
\ , 185
/* , 279
/**, 283
// , 282
% , 185
, 151
_ , 185

A

acceptsURL method, 188, 264
Access95, 225

and Java applications, 31
ODBC datasources, 40

Access to databases
access control, 16
concurrent access, 222, 223

add method
DatabaseMetaData class, 204
Numeric class, 244

addIconRecord method, 118
allProceduresAreCallable method, 252
allTablesAreSelectable method, 252
ALTER clause, SQL, 22
Applets, Java

Bar Chart applet, 100
datasource connections, 56, 59
datasources, querying, 57, 96
design, 51–55
getData method, 97
IQ class, 51–59, 236
and JDBC-ODBC Bridge, 32, 67–68
Pie Chart applet, 104
security manager, Java interpreter, 144
structure, 47–49

trusted vs. untrusted, 67–68, 144
Web page certification, 144

Application servers, 223–224
ApplicationServer class, 225
Arithmetic operations, Numeric objects, 244–246
Arrays, Java language, 302–307
as keyword, 27

B

Bar Chart applet, 100
BIGINT data type (SQL), in JDBC, 159
Binary data types, 158
Binary Large Objects (BLOBs), 213
BINARY data type (SQL), in JDBC, 158
BIT data type (SQL), in JDBC, 159
Bitwise operations, Numeric objects, 246
BLOBs (Binary Large Objects), 213
boolean data type (Java), 159, 299
Borland International, Inc., 5
Bridge, JDBC to ODBC. See JDBC-ODBC Bridge.
Bridges, native, 164–171
buildCategory method, 116
BuildDB class, 115
buildIconStore method, 117
Bulletproof, 5
byte data type (Java), 88, 297

C

C Language
bridges, 164–171
Java-generated files, 166
JDBC bridge, 168

CallableStatement class, 248–250
ODBC calls, 81
OUT parameters, 248, 249

CallableStatement objects, 196
cancel method, 271
CardLayout objects, 131
Case sensitivity, 15
Catalog methods

getTables method, 201, 203–206
implementing, 199
results format, 204

Catalogs, 16
CGI scripts, security, 142
Certification, Web pages, 144
Chaining

SQLExceptions, 153
SQLWarnings, 154

char data type (Java), 299
CHAR data type (SQL), 21

JDBC representation, 158
Character data types, 158, 299–300
Character literals, Java language, 293–294

CHECK command (SQL), 20
Circular dependencies, 197–198
Class names, Java language, 288
Classes, JDBC. See JDBC classes.
Class.forName method, 36
CLASSPATH environment variable, 35
clearParameters method, 265
clearWarning method, 266
clearWarnings method

Connection class, 250
Statement class, 271

close method
Connection class, 250
ResultSet class, 267
Statement class, 271

ColorGenerator class, 108
Column metadata, SimpleText JDBC driver, 200
Columns, 14

adding, 23
data, retrieving, 214
deleting, 22
SimpleText JDBC driver, 151
SimpleTextColumn objects, adding, 204

Command-line arguments, Java language, 307–310
Comment styles, Java language, 279–285
Commerce API, Java, 143, 144
commit method, 250
Common Applications Environment, 183
CommonValue class, 178
Concurrent database access, 222, 223
connect method, 70, 193, 264
Connection class, 195–198, 250–252

createStatement method, 197
creating statements, 196–198
getTables method, 204
initialize method, 195
ODBC calls, 70
variables, 251

Connection objects
closing, 132
creating, 38

ConnectionWatcher class, 231
ConnectToDB method

example71 class, 101
example72 class, 105

Constructors
DataTruncation class, 273
Date class, 241
DriverPropertyInfo class, 243
Numeric class, 244
SQLException class, 273
SQLWarning class, 274
Time class, 247
TimeStamp class, 247
Types class, 248

copyFile method, 136
CREATE Command (SQL), 21
createFromByteArray method, 244
createFromIntegerArray method, 244

createFromRadixString method, 244
createFromScale method, 244
createStatement method, 197, 250
Cyber SQL Corporation, 5

D

-D command line option, 36
Data

charting, 99–109
deleting, 24
displaying, 95–109
inserting, 23, 152
null values, 216
retrieving, 26, 214

Data classes, JDBC, 160–164
Data coercion, 177–182

data type conversions, 184
CommonValue objects, 178, 215

Data Definition Language. See DDL.
Data Maintenance Language. See DML.
Data Query Language. See DQL.
Data transfer errors, debugging, 273
Data type conversions, JDBC drivers, 184
Data types

BIGINT (SQL), 159
BINARY (SQL), 158
binary, 158
BIT (SQL), 159
boolean (Java), 159, 299
byte (Java), 297
byte[], 88
CHAR (SQL), 21, 158
char (Java), 299
character, 158
data coercion, 177–182
DATE (SQL), 159
DECIMAL (SQL), 158
DOUBLE (SQL), 159
double (Java), 299
FLOAT (SQL), 159
float (Java), 298
floating point, 159
getTypeInfo method, 258
int (Java), 297
INTEGER (SQL), 159
Java language, 158–160, 296–300
JDBC, 157–164
JDBC drivers, 158
large data objects, 213
long (Java), 298
LONGVARBINARY (SQL), 88, 158
LONGVARCHAR (SQL), 158
NUMERIC (SQL), 158
REAL, (SQL), 159
short (Java), 297
SimpleText JDBC driver, 151

SMALLINT (SQL), 159
SQL, 158–60
string (Java class), 300
TIME (SQL), 159
TIMESTAMP (SQL), 159
time, 159
TINYINT (SQL), 159
Types class (JDBC), 157
VARBINARY (SQL), 88, 158
VARCHAR (SQL), 21, 158

Data validation
date values, 162
time values, 163
timestamp values, 164

Database access
access control, 16
concurrent access, 222, 223

Database Management Systems. See DBMS.
Database servers, 141–143, 223
Database vendors, endorsements of JDBC, 5
DatabaseMetaData class, 199–206, 252–264

add method, 204
catalog methods, implementing, 199
getNumericFunctions method, 73, 184
getSearchStringEscape method, 73, 185
getStringFunctions method, 73, 184
getSystemFunctions method, 73, 184
getTables method, 78, 201, 203–206
getTimeDateFunctions method, 73, 184
ODBC calls, 71–79
result format, 204
supportsConvert method, 73, 184
variables, 263

Databases. See also Datasources.
access issues, 16, 222
concurrency, 222–223
relational model, 14–19

dataDefinitionCausesTransactionCommit method, 252
dataDefinitionIgnoredInTransactions method, 252
DataRamp, 5
Datasources

Access95, 40
automatic commit, 250
Connection class, 195–198
connections, closing, 59, 132, 250
connections, opening, 56, 68, 121, 193
querying, 57–59, 95–109
specifying, 37–38

DataTruncation class, 155–157, 273
Date class, 161, 241–242

valueOf method, 162
Date epoch, Java, 162
date escape clause, 183
Date functions, JDBC drivers, 184
DATE data type (SQL), in JDBC, 159
DBClient class, 233
DBMS (Database Management Systems)

drivers, 13–14
escape clauses, 182–186

JDBC compliance, 13–14
properties, retrieving, 190
Sybase, 209

DDL (Data Definition Language), 19–23
ALTER clause, 22
CHECK command, 20
CREATE command, 21
domains, 19
manipulating tables, 22–23
REFERENCES keyword, 22

Debugging. See also Tracing.
data transfer errors, 273

DECIMAL data type (SQL), in JDBC, 158
DELETE command (SQL), 24
deregisterDriver method, 242
destroy method, 48, 50

IQ class, 59
Dharma Systems, Inc., 5
displayIcon method, 132
divide method, 244
DML (Data Maintenance Language), 23–25

DELETE command, 24
INSERT command, 23
SET command, 25
UPDATE command, 24
WHERE clause, 24

Documentation, Java language, 283–286
doesMaxRowSizeIncludeBlobs method, 252
Domains, 19
double data type (Java), 299
DOUBLE data type (SQL), in JDBC, 159
doubleValue method, 245
DQL (Data Query Language), 25–28
Driver class, 186–195, 264

acceptsURL method, 188
connect method, 70, 193
constructor, 187
datasources, connecting to, 193
getPropertyInfo method, 70, 190, 192
ODBC calls, 70
URL processing, 187

Driver, SimpleText. See SimpleText JDBC driver.
DriverManager class, 152, 242–243

driver, selecting, 187
GetConnection method, 38, 69
println method, 175
setLogStream method, 70
tracing, 174

DriverManager object
JDBC drivers, registering, 36–37
sql.drivers property, 36
subprotocol, URL, 37

DriverPropertyInfo class, 243
Drivers, DBMS, JDBC compliance, 13–14
Drivers, JDBC. See JDBC drivers.

E

Encryption, 143
Enumeration objects, 125
equals method

Numeric class, 245
TimeStamp class, 247

Escape characters, LIKE predicate, 185
Escape clauses, 182–186

date, 183
LIKE predicate escape characters, 185
OUTER JOINS, 185
procedures, 185
scalar functions, 184–185
syntax, 183
time, 183
timestamp, 183

establishConnection method, 121
Event handling, 49–50, 55–56

IconStore application, 131
example71 class, 100
example72 class, 104
Exceptions, JDBC

DataTruncation class, 155–157, 273
SQLException class, 152–153, 273–274
SQLWarning class, 153–155, 274

execute method
PreparedStatement class, 81, 210, 265
Statement class, 80, 208, 271

executeQuery method
PreparedStatement class, 210, 265
Statement class, 206, 271

executeUpdate method
PreparedStatement class, 210, 265
Statement class, 207, 271

F

fail method, 226
File formats, SimpleText JDBC driver, 151
findColumn method, 214, 267
float data type (Java), 298
FLOAT data type (SQL), in JDBC, 159
Floating point data types, 159

Java language, 298–299, 301
floatValue method, 245
Foreign keys, 18

getCrossReference method, 253
getExportedKeys method, 254

G

‘get’ methods, 214
getAsciiStream method, 267
getAutoClose method, 250
getAutoCommit method, 250
getBestRowIdentifier method, 252
getBinaryStream method, 267

getBoolean method, 267
getByte method, 267
getBytes method, 267
getCatalog method, 250
getCatalogName method, 270
getCatalogs method, 253
getCatalogSeparator method, 253
getCatalogTerm method, 253
getCategories method, 123
getColumnCount method, 270
getColumnDisplaySize method, 270
getColumnLabel method, 83, 217, 270
getColumnName method, 270
getColumnPrivileges method, 253
getColumns method, 253
getColumnType method, 270
getColumnTypeName method, 270
getConnection method, 38, 242
getCrossReference method, 253
getCursorName method, 267
getData method, 97, 102, 107
getDatabaseProductName method, 254
getDatabaseProductVersion method, 254
getDataSize method, 273
getDate method, 267
getDefaultTransactionIsolation method, 254
getDoublemethod, 268
getDriver method, 242
getDriverMajorVersion method, 254
getDriverMinorVersion method, 254
getDriverName method, 254
getDrivers method, 242
getDriverVersion method, 254
getErrorCode method, 274
getExportedKeys method, 254, 259
getExtraName Characters method, 254
getFloat method, 268
getIconDesc method, 125
getIdentifierQuoteString method, 255
getImportedKeys method, 255
getIndex method, 273
getIndexInfo method, 255
getInfo method, 230
getInt method, 268
getLoginTimeout method, 242
getLogStream method, 242
getLong method, 268
getMajorVersion method, 264
getMaxBinaryLiteralLength method, 255
getMaxCatalogNameLength method, 255
getMaxCharLiteralLength method, 255
getMaxColumnNameLength method, 255
getMaxColumnsInGroupBy method, 256
getMaxColumnsInIndex method, 256
getMaxColumnsInOrderBy method, 256
getMaxColumnsInSelect method, 256
getMaxColumnsInTable method, 256
getMaxConnections method, 256
getMaxCursorNameLength method, 256

getMaxFieldSize method, 272
getMaxIndexLength method, 256
getMaxProcedureNameLength method, 256
getMaxRows method, 272
getMaxRowSize method, 256
getMaxSchemaNameLength method, 256
getMaxStatementLength method, 256
getMaxStatements method, 256
getMaxTableNameLength method, 256
getMaxTablesInSelect method, 256
getMaxUserNameLength method, 256
getMetaData method

Connection class, 251
ResultSet class, 267

getMinorVersion method, 264
getMoreResults method, 80, 209, 272
getNanos method, 247
getNextException method, 274
getNextWarning method, 274
getNumeric method, 268
getNumericFunctions method, 73, 184, 257
getObject method

PreparedStatement class, 212
ResultSet class, 268

getParameter method, 273
getPrecision method, 270
getPrimaryKeys method, 257
getProcedure method, 257
getProcedureColumns method, 257
getProcedures method, 257
getPropertyInfo method, 70, 190, 192, 264
getQueryTimeout method, 272
getRead method, 273
getResultSet method, 209, 272
getRoundingValue method, 245
getScale method

Numeric class, 245
ResultSetMetaData class, 270

getScaled method, 245
getSchemaName method, 270
getSchemas method, 257
getSchemaTerm method, 257
getSearchStringEscape method, 73, 185, 257
getShort method, 268
getSQLKeywords method, 257
getSQLState method, 274
getString method, 81, 214, 215, 269
getStringFunctions method, 73, 184, 257
getSystemFunctions method, 73, 184, 257
getTableName method, 270
getTablePrivileges method, 258
getTables method

Connection class, 204
DatabaseMetaData class, 78, 201, 203–206, 258

getTableTypes method, 258
getTime method, 269
getTimeDateFunctions method, 73, 184, 258
getTimestamp method, 269

getTransactionIsolation method, 251
getTransferSize method, 273
getTypeInfo method, 258
getUnicodeStream method, 269
getUpdateCount method, 80, 209, 272
getURL method, 258
getUserName method, 258
getVersionColumns method, 258
getWarnings method

Connection class, 251
ResultSet class, 269
Statement class, 272

Grammar, SQL, SimpleText JDBC driver, 150
greaterThan method, 245
greaterThanOrEquals method, 245
GridBagLayout layout manager, 52–55

properties, 53, 54
Gupta Corporation, 5

H

handleEvent method, 49
IconStore class, 130
IQ class, 55, 237

hashCode method, 245
Hashtable objects, 125

I

IBM’s Database 2 (DB2), 5
ICONCATEGORY table, 113
IconStore application, 111–138

and CardLayout object, 131
BuildDB class, 115–119
event handling, 131
IconStore class, 119–137
images, displaying, 132, 134
images, saving, 135
images, storing, 119
lists, creating, 125
menus, creating, 124

IconStore class, 119
ICONSTORE table, 113
Identifiers, Java language, 286–289
Images

displaying, 132, 134
saving, 135
storing, 119

Imaginary (mSQL), 5
Informix Software, Inc., 5
init method, 48

example71 class, 100
example72 class, 105
IconStore class, 127
IQ class, 52, 236

initialize method, 195

Initialization of variables, Java language, 301–302
Input parameters, 210–13
InputStream objects

images, displaying, 134
processing, 213

INSERT command (SQL), 23
int data type (Java), 297
Integer data types, 159

Java language, 296–298
INTEGER data type (SQL), in JDBC, 159
integerDivide method, 245
Interfaces. See also JDBC interfaces.

and circular dependencies, 198
implementation, 171–173
JDBC, 186–217, 248–272

Intersoft, 5
Intersolv, 5
IQ class, 51, 236
isAutoIncrement method, 270
isCaseSensitive method, 270
isCatalogAtStart method, 258
isClosed method, 251
isCurrency method, 270
isDefinatelyWritable method, 270
isNullable method, 270
isProbablePrime method, 245
isReadOnly method

Connection class, 251
DatabaseMetaData class, 259
ResultSetMetaData class, 270

isSearchable method, 271
isSigned method, 271
isWritable method, 271

J

Java
applets. See Applets, Java.
compiler, 197
date epoch, 162
GridBagLayout layout manager, 52–55
interpreter, 144
language basics. See Java programming language.
security, 67–68, 143–144

Java Commerce API, 143, 144
Java programming language, 275–310

arrays, 302–307
character literals, 293–294
class names, 288
command-line arguments, 307–310
comment styles, 279–285
data types, 296–300
documentation, 283–285
identifiers, 285–289
JAVADOC program, 283–285
keywords, 289
lexical structure, 278–296

literals, 291–294
numeric literals, 291–293
operators, 294–296
separators, 296
variables, 300–302

Java Security API, 143, 144
Java Security Manager, 67, 144
java.sql.* package, 33, 36, 88
java.util.Properties object, 69
JAVADOC program, 283–286
JavaSoft, 214
JDBC

applet security, 144–145
architecture, 6
compliance, database drivers, 13–14
data types, 157–164
endorsements by database vendors, 5
logging facility, 70
overview, 4

JDBC API
installation, 33
interfaces. See JDBC interfaces.
java.sql.* package, 33

JDBC classes. See also JDBC interfaces.
data classes, 160–164
DataTruncation class, 155–157
Date class, 160, 161, 241–242
DriverManager class, 152, 242–243
DriverPropertyInfo class, 243
Numeric class, 160, 243–246
SQLException class, 152–153
SQLWarning class, 153–155
Time class, 162, 246–247
Timestamp class, 160, 163, 247
Types class, 157, 247–248

JDBC compliance, database drivers, 13–14
JDBC drivers

C language bridges, 164–171, 168
clean-up responsibilities, 132
Connection class, 195–198
data coercion, 215
data type conversions, 184
data types, 158
DatabaseMetaData class, 199–206
datasources, connecting to, 193
date functions, 184
Driver class, 186–195
and DriverManager, 152, 187
escape clauses, 182–186
explicit loading, 36
instantiation, 37
JDBC-ODBC Bridge, 63–84
loading, 187
native bridges, 164–171
numeric functions, 184
registering and calling, 36–37
SimpleText. See SimpleText JDBC driver.
sql.drivers property, 36
string functions, 184

subprotocol, URL, 37
system functions, 184
time functions, 184
tracing, 173–176
using, 29–41

JDBC exceptions, 152–157
DataTruncation class, 155–157, 273
SQLException class, 152–153, 273–274
SQLWarning class, 153–155, 274

JDBC interfaces, 171–173, 186–217, 248–272
CallableStatement class, 248–250
Connection class, 195–198, 250–252
DatabaseMetaData class, 199–206, 252–64
Driver class, 186–195, 264
PreparedStatement class, 209–213, 264–266
ResultSet class, 214–217, 266–269
ResultSetMetaData class, 217, 269–271
Statement class, 206–209, 271–272

JDBC specification, 13, 132, 171
jdbcCompliant method, 264
JDBC-ODBC bridge, 8, 63–84

installing, 38–39
legacy databases, 223
limitations, 66–68
and ODBC drivers, 67
required components, 38–39
security, 67–68
URLs supported, 68

JdbcOdbcDriver, 38

K

Keys, 17–19
foreign, 18
getCrossReference method, 253
getExportedKeys method, 254
getImportedKeys method, 255
getPrimaryKeys method, 257
primary, 18

Keywords, Java language, 289

L

Large data objects, 213
Legacy databases, 13, 223
lessThan method, 245
lessThanOrEquals method, 245
Lexical structure, Java language, 278–296
LIKE predicate escape characters, 185
Literals, Java language, 291–294
Logging facility, JDBC, 70

methods in DriverManager class, 242–243
long data type (Java), 298
longValue method, 245
LONGVARBINARY data type (SQL)

Java representation, 88

JDBC representation, 158
LONGVARCHAR data type (SQL), in JDBC, 158

M

Microsoft
Access95, 31, 40, 225
Windows95, 35, 39

Middleware, 221–224
modExp method, 245
modInverse, 245
Modular calculation methods, 245
multiply method, 245
Multidimensional arrays (Java), 306–307
Multiple results, SQL statements, 209

N

Native drivers, 164–171
nativeSQL method, 251
NetCharts library, 100

bar chart class, 102
next method, 269
NOT NULL directive, 21
Null values, 216
Numeric class, 160, 243–246

variables, 246
Numeric data types, 158

Java language, 297–299
Numeric functions, 184
Numeric literals, Java language, 292–293
NUMERIC data type (SQL), in JDBC, 158

O

Object Database Management Group, 92
Object Design, Inc., 5
Object Relation Model (ORM), 90–92
ODBC calls

CallableStatement class, 81
Connection class, 70
DatabaseMetaData class, 71–79
Driver class, 70
PreparedStatement class, 80
ResultSet class, 81
ResultSetMetaData class, 82
Statement class, 79

ODBC drivers, 8
and Java applets, 32
and JDBC Bridge, 67
setting up, 39–40

ODBC specification, 183
ODMG (Object Database Management Group), 92
Open Horizon, 5
OpenLink Software, 5

Operators, Java language, 294–296
Oracle Corporation, 5
ORDER BY SQL directive, 26
ORM (Object Relation Model), 90–92
OUT parameters, and CallableStatement class, 248, 249
OUTER JOINS, escape clauses, 185

P

Packet sniffing, 141
Parameter values, setting, 210–213
parse methods, 310
Performance, application servers, 224
Persistence Software, 5
pi method, 245
Pie Chart applet, 104
pow method, 246
prepareCall method, 251
PreparedStatement class, 209–213, 264–266

execute method, 81, 210
executeQuery method, 210
executeUpdate method, 210
getObject method, 212
ODBC calls, 80
parameter values, setting, 210–213
setBinaryStream method, 213
setObject method, 212
setString method, 211
verify method, 211
vs Statment class, 210

PreparedStatement objects, 196
prepareStatement method, 251
Presence Information Design, 5
Primary keys, 18

getImportedKeys method, 255
getPrimaryKeys method, 257

Prime number calculation methods, 245
println method, DriverManager class, 242
PRO-C, Inc., 5
Procedures, escape clauses, 185
ProcessCommand method, 234
Properties, DBMS, retrieving, 190
Properties objects, 38, 69
public methods, 171

Q

Queries, threaded, 271
Query results, 95–109, 248

displaying, 98–109
multiple, 209
storing in Java object, 96–98

R

random method, 246
Reader class, 234
REAL data type (SQL), in JDBC, 159
Recital Corporation, 5
REFERENCES keyword, 22
registerDriver method, 243
registerOutParameter method, 249, 250
Relational model, 14–19
remainder method, 246
ResultSet class, 89, 214–217, 266–269

findColumn method, 214
getString method, 81, 214, 215
ODBC calls, 81
verify method, 216
wasNull method, 216

ResultSetMetaData class, 90, 217, 269–271
getColumnLabel method, 83, 217
ODBC calls, 82
variables, 271

RogueWave Software, Inc., 5
rollback method, 251
Rounding, Numeric class, 160
Rows, 14

deleting, 24
inserting, 23

run method
ApplicationServer class, 227
ConnectionWatcher class, 231
Reader class, 234
ServerConnection class, 228

runQuery method, 230

S

SAS Institute, Inc., 5
.SBF (Simple Binary File) extension, 151
Scalar functions, escape clauses, 184–185
Schemas, 15
SCO, 5
.SDF (Simple Data File) extension, 151
Security, 141–145, 223

application servers, 224
CGI scripts, 142
database servers, 141–143
Java Commerce API, 143, 144
Java Security API, 143
JDBC applets, 144–145
JDBC drivers, 67–68
packet sniffing, 141
security manager, Java interpreter, 144
three-tier client/server systems, 143, 223
Web page certification, 144

Security API, Java, 143, 144
SELECT Command (SQL), 25
select method, 57
Separators, Java language, 296
ServerConnection class, 227

SET SQL command, 25
setAutoClose method, 251
setAutoCommit method, 251
setBinaryStream method, 213
setCatalog method, 251
setCursorName method, 272
setEscapeProcessing method, 272
setLoginTimeout method, 243
setLogStream method, 243
setMaxFieldSize method, 272
setMaxRows method, 272
setNanos method, 247
setNextException method, 274
setNextWarning method, 274
setObject method, 212
setQueryTimeout method, 272
setReadOnly method, 251
setRoundingValue method, 246
setScale method, 246
setString method, 211
setTransactionIsolation method, 251
shiftLeft method, 246
shiftRight method, 246
short data type (Java), 297
ShowChartData method

example71 class, 101
example72 class, 105

ShowFormattedData method
example71 class, 101
example72 class, 105

significantBits method, 246
SimpleText JDBC driver, 147–218

column metadata, representation, 200
CommonValue class, 178
Connection class, 195–198
data coercion, 215
data types, 151
DatabaseMetaData class, 199–206
Driver class, 186–195
file formats, 151
image data, storing, 119
input parameter values, 211
InputStream objects, processing, 213
inserting data, 152
MyBridge class, 165
PreparedStatement class, 209–213
ResultSet class, 214–217
ResultSetMetaData class, 217
SimpleTextColumn class, 200
SimpleTextInputStream class, 217
SimpleTextTable class, 205
specifications, 150–152
SQL grammar, 150
Statement class, 206–209

SimpleTextColumn class, 200
SimpleTextInputStream class, 217
SimpleTextTable class, 205
Simultaneous server connections, 223, 224
SMALLINT data type (SQL), in JDBC, 159

Specifications
JDBC, 13, 171
ODBC, 183
SimpleText JDBC driver, 150–152

SQL (Structured Query Language), 13–26.
See also SQL statements.
ALTER clause, 22
as keyword, 27
CHECK command, 20
CREATE command, 21
data types, 158–160, 258
DDL (Data Definition Language), 19–23
DELETE command, 24
DML (Data Maintenance Language), 23–25
domains, 19
DQL (Data Query Language), 25–28
escape clauses, 182–186
grammar, SimpleText JDBC driver, 150
INSERT command, 23
NOT NULL directive, 21
ORDER BY directive, 26
REFERENCES keyword, 22
SELECT command, 25
SET command, 25
string data types:, 21
syntax, 14
UPDATE command, 24
variables, 27
WHERE clause, 24

SQL Access Group, 183
SQL CAE (Common Applications Environment), 183
SQL statements. See also Query results.

creating, 196–198
executing, 206, 208
input parameters, 210–213
multiple results, 209
pre-compiled, 209
PreparedStatement class, 209
results, 208
Statement objects, 198

sql.drivers system property, 36
SQLException class, 152–153, 273–274
SQLException objects, tracing, 175
SQLWarning class, 153–155, 274
SQLWarning objects, 208
sqrt method, 246
start method, 48
Statement class, 206–209, 271–272

execute method, 80, 208
executeQuery method, 206
executeUpdate method, 207
getMoreResults method, 80, 209
getResultSet method, 209
getUpdateCount method, 80, 209
ODBC calls, 79
vs. PreparedStatment class, 210

Statement objects, 196, 198
and SQLWarning objects, 208

Statements, creating, 196–198
stop method, 48
String data types, SQL, 21
String functions, JDBC drivers, 184
string Java class, 300
Structured Query Language. See SQL.
Subname, URL, 68
Subprotocol, URL, 68
subtract method, 246
supportsConvert method, 73, 184
Sybase DBMS, 209
Sybase, Inc., 5
Symantec, 5
System functions, JDBC drivers, 184
System properties, 36

T

Tables, 14
creating, 20
and Java objects, 91
manipulating, 22–23
multiple, 18

target property, 50
Text files, SimpleText JDBC driver, 151
Threaded queries, 271
Three-tier client/server systems, 143, 221–224
Thunderstone, 6
Time class, 162, 246–247

toString method, 247
valueOf method, 163, 247

Time data types, 159
time escape clause, 183
Time functions, JDBC drivers, 184
TIME data type (SQL), in JDBC, 159
Timestamp class, 163, 247

valueOf method, 164
timestamp escape clause, 183
TIMESTAMP data type (SQL), in JDBC, 159
TINYINT data type (SQL), in JDBC, 159
toString method

Date class, 242
Numeric class, 246
Time class, 247
TimeStamp class, 247

traceOn method, 176
Tracing, 173–176

JDBC components, 175
traceOn method, 176
verifying, 175

Truncation of data, tracking, 155–157, 273
Type casting. See Data coercion.
Types class, 157, 247–248

variables, 248

U

Unix
JDBC API installation, 35
JDBC-ODBC Bridge installation, 39

UPDATE command, 24
URLs (Uniform Resource Locators), 37–38, 68

V

value method, 245
valueOf methods, 310

Date class, 162, 242
Time class, 163, 247
Timestamp class, 164, 247

VARBINARY data type (SQL)
Java representation, 88
JDBC representation, 158

VARCHAR data type (SQL), 21
JDBC representation, 158

Variables, Java language, 300–302
Vendors, database, JDBC endorsements, 5
verify method

PreparedStatement class, 211
ResultSet class, 216

Visigenic Software, Inc., 6

W

wasNull method, 216, 269
WebLogic, Inc., 6
Web page certification, 144
weightx, weighty properties, 53
WHERE SQL clause, 24
Whitespace, 14
Windows 95

JDBC API installation, 35
JDBC-ODBC Bridge, installation, 39

X

X/OPEN, 183
XDB Systems, Inc., 6

Table of Contents

